PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphology and Hardness of Electrochemically-Codeposited Ti-Dispersed Ni-Matrix Composite Coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Morfologia i twardość elektrochemicznie współosadzonych powłok kompozytowych Ni-Ti
Języki publikacji
EN
Abstrakty
EN
The effects of current density and Ti particle loading in a plating bath on the morphology and hardness of Ni-Ti composite coatings via an electrochemical-codeposition process were investigated. The Ti-reinforced Ni-matrix composite coatings were codeposited on copper substrates using a Ni-ion electrolytic solution stably suspended with -45 micron Ti particles. Within the current studied range, the coatings’ Ti contents are in the range between 46 and 62 at.%. The morphology appeared to vary with current density. Structures of the Ni-Ti composite coatings produced under low current density conditions revealed denser structures, which is in contrast to the more porous structures noted in the coatings produced under high current density. An initial increase of current density from 100 to 150 mA/cm2 also tends to raise Ti coating content. The reinforcement of Ti particles in the coatings also increased their hardness, which is attributed to the possible role of the embedded Ti particles in hindering matrix deformation. The effect of Ti loading on the coating’s Ti contents was not significant under conditions used in the present study.
PL
Badano wpływ gęstości prądu i zawartości cząstek Ti w kąpieli galwanicznej na morfologię i twardość elektrochemicznie współosadzanych powłok kompozytowych Ni-Ti. Kompozytowe powłoki niklowe zbrojone cząstkami Ti zostały współosadzone na powierzchniach miedzianych z kąpieli elektrolitycznej zawierającej jony Ni i 45 mikronowe cząstki Ti tworzące stabilną zawiesinę. Zawartość Ti wbudowanego w powłoki wahała się w granicach 46-62 at.%. Morfologia powłok zmienia sie wraz ze zmianą stosowanej gęstości prądu. W przypadku kompozytowych powłok Ni-Ti wytwarzanych przy niskich gęstościach prądu stwierdzono bardziej zwarte struktury, w przeciwienstwie do bardziej porowatych struktur stwierdzonych w przypadku powłok wytwarzanych przy wysokich gęstościach prądu. Początkowy wzrost gęstości prądu od 100 do 150 mA/cm2 równiez powoduje podniesienie zawartości Ti w powłokach. Ze wzrostem zawartości Ti wzrasta również twardość powłoki, co można przypisać roli osadzonych cząstek Ti utrudniających odkształcenie osnowy. W warunkach stosowanych w tej pracy wpływ zawartości Ti w kąpieli na zawartość Ti w powłokach nie był znaczący.
Twórcy
autor
  • Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
  • Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
  • Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
  • Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
Bibliografia
  • [1] G. Maurin, A. Lavanant, Electrodeposition of nickel/silicon carbide composite coatings on a rotating disc electrode, Journal of Applied Electrochemistry 25, (1995).
  • [2] A. Sohrabi, A. Dolati, M. Ghorbani, A. Monfared, P. Stroeve, Nanomechanical properties of functionally graded composite coatings: Electrodeposited nickel dispersions containing silicon micro- and nanoparticles, Materials Chemistry and Physics 121, 3, 497-505 (2010).
  • [3] T. Borkar and S. P. Harimkar, Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings, Surface and Coatings Technology 205, 17-18, 4124-4134 (2011).
  • [4] V. D. Stankovic and M. Gojo, Electrodeposited composite coatings of copper with inert, semiconductive and conductive particles, Surface and Coatings Technology 81, 2-3, 225-232 (1996).
  • [5] L. Burzyńska, E. Rudnik, J. Koza, L. Błaż, W. Szymański, Electrodeposition and heat treatment of nickel/silicon carbide composites, Surface and Coatings Technology 202,. 12, 2545-2556 (2008).
  • [6] Y. Boonyongmaneerat, K. Saengkiettiyut, S. Saenapitak, S. Sangsuk, Pulse co-electrodeposition and characterization of NiW - WC composite coatings, Journal of Alloys and Compounds 506, 1, 151-154 (2010).
  • [7] Y. Boonyongmaneerat, K. Saengkiettiyut, S. Saenapitak, S. Sangsuk, Effects of WC addition on structure and hardness of electrodeposited Ni-W, Surface and Coatings Technology 203, 23, 3590-3594 (2009).
  • [8] Q. Feng, T. Li, H. Yue, K. Qi, F. Bai, J. Jin, Preparation and characterization of nickel nano-Al2O3 composite coatings by sediment co-deposition, Applied Surface Science 254,. 8, 2262-2268 (2008).
  • [9] Y. Wang, Y. Wan, S. Zhao, H. Tao, X. Dong, Electrodeposition and characterization of Al2O3-Cu(Sn), CaF2-Cu(Sn) and talc-Cu(Sn) electrocomposite coatings, Surface and Coatings Technology 106, 2-3, 162-166 (1998).
  • [10] E. Bełtowska-Lehman, A. Góral, P. Indyka, Electrodeposition and characterization of Ni/Al2O3 nanocomposite coatings, Archives of Metallurgy and Materials 56, 4, 919 - 931 (2011).
  • [11] J. Panek, A. Budniok, Production and electrochemical characterization of Ni-based composite coatings containing titanium, vanadium or molybdenum powders, Surface and Coatings Technology 201, 14, 6478-6483 (2007).
  • [12] I. Napłoszek-Bilnik, A. Budniok, E. Łągiewka, Electrolytic production and heat-treatment of Ni-based composite layers containing intermetallic phases, Journal of Alloys and Compounds 382, 1-2, 54-60 (2004).
  • [13] H. Liu. W. Chen, Electrodeposited Ni-Al composite coatings with high Al content by sediment co-deposition, Surface and Coatings Technology 191, 2-3, 341-350 (2005).
  • [14] A. Serek, A. Budniok, Production of electrolytic nickel and nickel-phosphorous composite layers containing titanium, Current Applied Physics 2, 3, 193-199 (2002).
  • [15] J. Panek, A. Serek, A. Budniok, E. Rówinski, and E. Łagiewka, Ni+Ti composite layers as cathode materials for electrolytic hydrogen evolution, International Journal of Hydrogen Energy 28, 2, 169-175 (2003).
  • [16] S. Srikomol, Y. Boonyongmaneerat, R. Techapiesancharoenkij, Electrochemical codeposition and heat treatment of nickel-titanium alloy layers, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 44, 1, 53 - 62 (2013).
  • [17] C. T. J. Low, R. G. A. Wills, F. C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surface and Coatings Technology 201, 1-2, 371-383 (2006).
  • [18] I. Naploszek-Bilnik, A. Budniok, B. Losiewicz, L. Pajak, E. Lagiewka, Electrodeposition of composite Ni-based coatings with the addition of Ti or/and Al particles, Thin Solid Films 474, 1-2, 146-153 (2005).
  • [19] J. Panek, A. Budniok, Production and electrochemical characterization of Ni-based composite coatings containing titanium, vanadium or molybdenum powders, Surface and Coatings Technology 201, 14, 6478-6483 (2007).
  • [20] J. Li, Y. Sun, X. Sun, J. Qiao, Mechanical and corrosion-resistance performance of electrodeposited titania-nickel nanocomposite coatings, Surface and Coatings Technology 192, 2-3, 331-335 (2005).
  • [21] R. Q. Fratari, A. Robin, Production and characterization of electrolytic nickel-niobium composite coatings, Surface and Coatings Technology, 200, 12-13, 4082-4090 (2006).
  • [22] I. Garcia, J. Fransaer, J.-P. Celis, Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles, Surface and Coatings Technology 148, 2-3, 171-178 (2001).
  • [23] C. S. Ramesh and S. K. Seshadri, Tribological characteristics of nickel based composite coatings, Wear 255, 7-12, 893-902 (2003).
  • [24] H. Ferkel, B. Müller, W. Riehemann, Electrodeposition of particle-strengthened nickel films, Materials Science and Engineering: A 234-236, 0, 474-476 (1997).
  • [25] Z. Abdel Hamid, I. Ghayad, Characteristics of electrodeposition of Ni-polyethylene composite coatings, Materials Letters 53, 4-5, 238-243 (2002). [
  • [26] D. F. Susan, K. Barmak, A. R. Marder, Electrodeposited NiAl particle composite coatings, Thin Solid Films 307, 1-2, 133-140 (1997).
  • [27] A. Serek, A. Budniok, Electrodeposition and thermal treatment of nickel layers containing titanium, Journal of Alloys and Compounds 352, 1-2, 290-295 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e1acca9-a967-4c06-8d2c-f0b7d28a3717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.