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Abstract. The paper presents the results of the project which examines the level of accuracy that can be achieved in precision indoor

positioning by using a pedestrian dead reckoning (PDR) method. This project is focused on estimating the position using step detection

technique based on foot-mounted IMU.

The approach is sensor-fusion by using accelerometers, gyroscopes and magnetometers after initial alignment is completed. By estimating

and compensating the drift errors in each step, the proposed method can reduce errors during the footsteps. There is an advantage of the step

detection combined with ZUPT and ZARU for calculating the actual position, distance travelled and estimating the IMU sensors’ inherent

accumulated error by EKF. Based on the above discussion, all algorithms are derived in detail in the paper. Several tests with an Xsens IMU

device have been performed in order to evaluate the performance of the proposed method.

The final results show that the dead reckoning positioning average position error did not exceed 0.88 m (0.2% to 1.73% of the total

traveled distance – normally ranges from 0.3% to 10%), what is very promising for future handheld indoor navigation systems that can be

used in large office buildings, malls, museums, hospitals, etc.
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1. Introduction

Positioning and navigation systems have achieved great suc-

cess in personal navigation applications or location-based ser-

vices (LBS) and are now becoming standard features in to-

day’s intelligent mobile devices [1–10]. As GPS is essential

for outdoor navigation, locating a mobile user anytime and

anywhere it is still a challenging task, especially in GPS

degraded and denied environments such as urban canyons

and indoor environments Lately, some other positioning tech-

niques have been developed such as wearable dead reckoning

(DR) sensors, pseudolites, Wi-Fi, ZigBee, Ultra Wideband

(UWB), and RFID to obtain a seamless indoor/outdoor posi-

tioning solution. However, the characteristics of wireless sig-

nal (Time of Arrival (TOA), Angle of Arrival (AOA), and

Received Signal Strength (RSS)) are uncertainty and effected

easily by multi-path, random moving of people and so on.

The positioning accuracy and application of these techniques

is limited.

Recently, some new techniques using camera control [2]

or multichannel ultrasonic range finder [9] have supported in-

door positioning and put them to practical use, especially for

blind people.

During the last decade, some methodologies have been al-

so proposed based on inertial sensors for person’s location [7],

which is often called Pedestrian Dead Reckoning (PDR) The

conventional PDR solutions measure the acceleration from ac-

celerometers to take the step count and to estimate the step

length and propagate the position with the heading from an-

gular sensors such as magnetometers or gyroscopes. However,

these signals are sensitive to the alignment of sensor units, the

inherent instrumental errors and disturbances from the ambi-

ent environment. PDR has a large range of applications, such

as emergency rescue workers, finding goods in a shopping

mall, guiding blind pedestrians or even navigating firefighters

in a burning house

The sensors (normally three accelerometers and three gy-

roscopes and even other sensors, such as magnetometers, ther-

mometers and pressure sensors) are small, low power, and

inexpensive due to the advances in Micro-electromechanical

Sensors (MEMS) technology.

However, the MEMS sensors suffer from a significant bias

that varies greatly over time So PDR algorithms have the

challenge of decreasing error In this paper, a PDR indoor po-

sitioning method with step detection based on foot-mounted

IMU is designed, tested, and analyzed. Firstly, initial align-

ment is completed with accelerometers and magnetometers.

Then, step detection method with the foot on the ground deter-

mines when the person is at rest (static) with the zero velocity

and angular rate. And an Extended Kalman Filter (EKF) is ap-

plied to estimate the errors accumulated due to the IMU sensor

biases. Several tests with Xsens IMU device have been per-

formed in order to evaluate the performance of the proposed

method. The results show that the dead reckoning positioning

system has a high performance for indoor positioning appli-

cations.

2. PDR indoor positioning method

In inertial pedestrian navigation, IMU was used successful-

ly by strapping the IMU on foot/shoe. The PDR indoor po-

sitioning method has been implemented in a Kalman-based
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framework [3]. The basic idea is to use an EKF to esti-

mate the errors accumulated by the IMU sensor biases. The

EKF is updated with velocity and angular rate measurements

by the Zero-Velocity-Update (ZUPT) and Zero-Angular-Rate

Update (ZARU) separately detected the foot is on the floor.

Then the sensor biases are compensated with the estimated

errors. Therefore the frequent use of ZUPT/ZARU measure-

ments consistently bounds many of the errors and as a result,

even relatively low cost sensors can provide useful navigation

performance.

Figure 1 shows the framework. It contains five blocks.

1) an initial alignment that calculates the initial attitude with

the static data of accelerometers and magnetometers during

the first few minutes; 2) an IMU mechanization algorithm to

compute the navigation parameters (position, velocity and at-

titude); 3) a step detection algorithm to determine when the

foot is on the ground and velocity and angular rate of IMU are

zero; 4) ZUPT and ZARU feed the EKF with the measured

errors when step detected; and 5) a EFK that estimates the

errors and feedback to IMU mechanization algorithm.

Fig. 1. The framework of pedestrian dead reckoning indoor position-

ing with step detection based on foot-mounted IMU

2.1. Initial alignment. The initial alignment of an IMU is

accomplished by two steps, leveling and gyro compassing.

Leveling refers to getting the roll and pitch using the accel-

eration and gyro compassing refers to obtaining the heading

using the angular rate. However, the bias and noise of gyro-

scopes are larger than the value of the Earth’s rotation rate

for the MEMS IMU, so the heading has a big error. In this

paper, initial alignment of MEMS IMU is completed using

the static data of accelerometers and magnetometers during

the first few minutes, and a method for heading is presented

using the magnetometers

In static base, the roll (ϕ) and pitch (θ) angles are:

θ = −arc sin(ab
ibx/g), (1)

ϕ = arc sin(ab
iby/(g · cos θ)), (2)

where ab
ibx and ab

iby denote the x and y-axis output of ac-

celerometers separately in body frame – body fixed to the

device (b, defined to be Front-Left-Up) in the right hand-

ed Cartesian coordinate system as Fig. 2 below from Xsens

Technologies [10], and g represents the acceleration of grav-

ity.

Fig. 2. MTi sensor coordinate frame

In order to use the magnetometers to obtain the heading,

we first compute the intensity of magnetic field in navigation

frame (n, defined to be North-West-Up) with magnetometers’

outputs:

Mnx = Mbx cos θ +Mby sinϕ+Mbz cosϕ, (3)

Mny = Mby cosφ−Mbz, (4)

where Mbx, Mby and Mbz denote the x, y and z-axis output

of magnetometers separately, Mnx and Mny represent the x
and y-axis of magnetic field intensity in navigation frame.

So the heading angle is:

ψ = tan−1(Mny/Mnx) −Md, (5)

whereMd is the earth magnetic declination at a given position

of IMU.

2.2. IMU mechanization algorithm. The IMU mechaniza-

tion algorithm uses the outputs of accelerometers and gyro-

scopes in the body frame (b), (ab
k and ωb

k, respectively) which

are sampled at discrete times k at every sample interval ∆t.
As the bias of MEMS sensors, firstly subtracting the errors

estimated by the EKF from the raw acceleration and angular

rate.

ab
k = ab

k − δab
k−1, (6)

ωb
k = ωb

k − δωb
k−1, (7)

where ab
k and ωb

k denote the bias-compensated acceleration

and angular rate respectively at discrete times k, δab
k−1 and

δωb
k−1 represent the error estimated by EFK separately at dis-

crete times k − 1.

Then, we update the direction cosine matrix (DCM) with

respect to the navigation frame:

Cn
b (k, k − 1) = Cn

b (k − 1, k − 1) · 2 · I3 + δΩk · ∆t
2 · I3 − δΩk · ∆t , (8)

where Cn
b (k, k − 1) denotes the DCM from body frame to

navigation frame at time k but not corrected by EKF. And

Cn
b (k− 1, k− 1) is the DCM from body frame to navigation

frame at time k − 1 that was already corrected. And δΩk is

the skew symmetric of the bias-compensated angular rate.

δΩk =











0 ωb
k(3) ωb

k(2)

ωb
k(3) 0 −ωb

k(1)

−ωb
k(2) ωb

k(1) 0











. (9)
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We update the velocity and position but not yet compensated

by EKF in navigation frame:

v(k, k − 1) = v(k − 1, k − 1)

+ (Cn
b (k, k − 1) · ab

k − [00g]T ) · ∆t,
(10)

r(k, k − 1) = r(k − 1, k − 1) + v(k, k − 1) · ∆t, (11)

where v(k, k − 1) and r(k, k − 1) denote the velocity and

position in navigation frame at time k but not corrected by

EKF, and v(k − 1, k − 1) and r(k − 1, k − 1) are the bias-

compensated velocity and position in navigation frame at time

k − 1.

Lastly, we correct the DCM, velocity and position with

the estimated errors of EKF:

r(k, k) = r(k, k − 1) − δrk, (12)

v(k, k) = v(k, k − 1) − δvk, (13)

Cn
b (k, k) =

2 · I3 + δΘk

2 · I3 − δΘk

· Cn
b (k, k − 1), (14)

where Cn
b (k, k), v(k, k) and r(k, k) denote the DCM, ve-

locity and position at time k, and δφk, δvk and δrk are the

estimated errors by EKF accordingly. And δΘk is the skew

symmetric matrix of δφk .

δΘk =







0 −δφk(3) δφk(2)

δφk(3) 0 −δφk(1)

−δφk(2) δφk(1) 0






. (15)

It is mentioned that the estimated errors of angle, velocity

and position are reset to zero after IMU mechanization algo-

rithm uses them to correct. This is because they are already

compensated.

2.3. Step detection. The movement of foot-mounted IMU

can be divided into two phases when a person walks. The first

one is the swing phase that means the foot-mounted IMU in

moving. The other is the stance phase that means the foot-

mounted IMU on the ground. Angular and linear velocity of

the foot-mounted IMU must be very close to zero in theory

in the stance phase. So the angular and linear velocity of the

foot-mounted IMU can be as the measurements of EKF. This

is the main idea of ZUPT and ZARU.

There are a few algorithms in the literature for step detec-

tion based on acceleration [6] and angular rate [7]. We use a

multi-condition algorithm to complete the step detection by

using the outputs of accelerometers and gyroscopes.

1. As the acceleration of gravity, the magnitude of the accel-

eration (|ak|) must be between two thresholds.

|ak| =
√
a

b

k(1)2 + ab
k(2)2 + ab

k(3)2, (16)

C1 =

{

1 9 < |ak| < 11

0 otherwise
(17)

2. The acceleration variance must be above a given threshold.

ab
k =

1

2s+ 1

k+s
∑

q=k−s

|aq|, (18)

where ab
k is a mean acceleration value at time k, and s is

the size of the averaging window (s = 15). The variance

is computed by this expression:

σ(ab
k)2 =

1

2s+ 1

k+s
∑

j=k−s

(|aj | − ab
k)2. (19)

The second condition is computed by this way:

C2 =







1 σ(ab
k) < 0.5

0 otherwise
(20)

3. The magnitude of the angular rate (|ωk|) must be below a

given threshold.

|ωk| =
√

ωb
k(1)2 + ωb

k(2)2 + ωb
k(3)2, (21)

C3 =

{

1 |ωk| < 1

0 otherwise
(22)

The three logical conditions must be satisfied at the same

time, which means a logical “AND” is used:

C = C1&C2&C3. (23)

Finally, the logical result is filtered out by a median filter

with a neighboring window of 11 samples. The logical “1”

denotes the stance phase that means the foot-mounted is on

the ground. Figure 3 shows the results of this multi-condition

step detection.

Fig. 3. The logical value of multi-condition step detection

2.4. EKF. The Kalman filter is widely used in inertial nav-

igation systems. However, a Kalman filter is based on linear

operations, and the navigation algorithms consist of non-linear

systems. One way to solve this problem is to linearize the non-

linear system, which is known as the Extended Kalman Filter

(EKF).

In the proposed PDR indoor positioning method, the 15-

element error state vector at time k is used [3]:

δX(k, k) = [δφk, δω
b
k, δrk, δvk, δa

b
k], (24)
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where δX(k, k) denotes the three angle errors for roll, pitch

and yaw, the angular errors in body frame, position errors and

velocity errors in navigation frame, and acceleration errors in

body frame. Then, the linear state transition model is:

δX(k, k − 1) = ΦkδX(k − 1, k − 1) + wk−1, (25)

where δX(k, k− 1) is the predicted error state vector at time

k, δX(k− 1, k− 1) is the estimated error state vector at time

k − 1, and wk−1 is the system noise at time k − 1 with co-

variance matrix Qk−1 = E
(

wk−1w
T
k−1

)

, and Φk is the state

transition matrix:

Φk =














I3 ∆t · Cn

b
(k, k − 1) 0 0 0

0 I3 0 0 0

0 0 I3 ∆t · I3 0

−∆t · S(an

k
) 0 0 I3 ∆t · Cn

b
(k, k − 1)

0 0 0 0 I3















,

(26)

where S(an
k ) is the skew symmetric matrix of predicted ac-

celeration in navigation frame (an
k ):

an
k = Cn

b (k, k − 1) · ab
k, (27)

S(an
k ) =











0 −an
k (3) an

k (2)

an
k (3) 0 −an

k(1)

−an
k (2) an

k (1) 0











. (28)

The measurement model is:

Zk = HδX(k, k) + nk, (29)

where Zk is the measurement value, H is the measurement

matrix, and nk is the measurement noise with covariance ma-

trix Rk = E
(

nkn
T
k

)

.

So the estimated error state vector at time k by EKF is

computed:

δX(k, k) = δX(k, k− 1)+Kk[Zk −HδX(k, k− 1)], (30)

where Kk is the Kalman gain:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1, (31)

where Pk|k−1 is the estimation error covariance matrix:

Pk|k−1 = Φk−1Pk−1|k−1Φ
T
k−1 +Qk−1, (32)

where Pk|k is the error covariance matrix:

Pk|k = (I15−KkH)Pk|k−1(I15−KkH)T +KkRkK
T
k . (33)

2.5. ZUPT and ZARU. In this project an IMU/EKF with

Zero Velocity Update (ZUPT) and Zero Angular Rate Update

(ZARU) is tested. The ground truth allowed the detection of

an implementation error and these two methods to correct it

are proposed. We focus on reducing the drift without using

any external infrastructure such as GPS and LPS, nor map

matching techniques After evaluating the effect of the IMU

errors in the positioning, the reduction in the positioning stan-

dard deviation is shown.

The measurement vector is represented for ZUPT and

ZARU [1]:

Zk = [ωb
k, v(k, k − 1)]. (34)

The measurement matrix must be:

H =





03×3 I3 03×3 03×3 03×3

03×3 03×3 03×3 I3 03×3



. (35)

2.6. EKF Tuning. EKF had to be fine-tuned for getting a sta-

ble performance, and the values of matrixes Q and R have to

be selected carefully [1]. The process noise covariance matrix

Q of state equation is set as a diagonal 15×15 matrix with

these 15 in-diagonal elements of [1× 10−4
1×3 rad, 01×3, 01×3,

1 × 10−4
1×3 m/s, 01×3]. The measurement noise covariance

matrix R of observation equation is a square diagonal matrix

with rows and columns equal to the number n, of measure-

ments available (n = 6 for ZUPT and ZARU), and this matrix

is set as these in-diagonal elements with values of 0.01 m/s

for ZUPT, 0.1 rad/s for ZARU. And the state estimation co-

variance matrix P is initialized as a diagonal 15×15 matrix

with these in-diagonal elements of [01×3, 1 × 10−2
1×3 rad/s,

01×3, 01×3, 1 × 10−2
1×3 m/s2].

During IMU data processing, we have to tune EKF again

for trying to get the best PDR algorithm results.

3. Test results

The proposed method for PDR indoor positioning was tested

in an indoor environment. Two tests (slow and fast walking)

with MTi attached to the right foot of person were imple-

mented in the corridor of a building at campus of Nanchang

University, China. IMU has been configured to output data at

the rate of 100 Hz (Fig. 4).

Fig. 4. Device setup, route and implementation of tests

In addition, we designed the noise covariance matrixes of

state and observation equations, Q and R, according to the

discussion of Subsec. 2.6 and the technical specifications from

Xsen Technologies [10]. And then matrixes Q and R have to

be finely modified during the tests for fitting into our EKF.

In this research, we tested it twice. Figure 5 shows the

first of estimated trajectories for a path 9048 meters long (the

same for both tests), which is slow walking in the hallway

in Counter-Clock-Wise directions. Initial alignments in both

cases took one minute. The start position is marked with a

green square.
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Fig. 5. The positioning result (slow walking) using ZUPT and ZARU corrections

Fig. 6. Coordinate differences (slow walking) for ZUPT correction

Fig. 7. Coordinate differences (slow walking) for ZUPT and ZARU

corrections

Table 1 and Table 2 show summary of position errors

using ZUPT only and ZUPT and ZARU corrections.

The second experiment was carried out on the same test

route used previously. This time, the walking speed was faster

to check the performance of MTi unit. Figure 8 shows the ob-

tained trajectories.

Table 1

Coordinate differences (slow walking) for ZUPT correction

dx dy

MIN (cm) 0 0

MAX (cm) 390 161

AVERAGE (cm) 87 28

STDEV (cm) 78 35

Table 2

Coordinate differences (slow walking) for ZUPT and ZARU corrections

dx dy

MIN (cm) 0 0

MAX (cm) 333 211

AVERAGE (cm) 88 36

STDEV (cm) 70 48

Figures 9 and 10 show the comparison of the MTi IMU

position results to real positions.

After comparing the results to the reference positions, in

spite of long and narrow hallway, the average differences were

still at the centimeter level (Table 3 and Table 4).

As the real trajectories closed, we additionally computed

the distance errors (difference between initial and final posi-

tion) with respect to the total traveled distance. Table 5 shows

the differences in distances. The results show that the dead

reckoning positioning system has higher performance for a

pedestrian indoor, and the position error ranges from 0.9% to

1.73% (slow walking) and from 0.2% to 0.5% (fast walking)

of the total traveled distance This is definitely better than ex-

isting PDR positioning accuracy which normally ranges from

0.3% to 10% of the total traveled distance.

Fig. 8. The positioning result (fast walking) using ZUPT and ZARU corrections
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Fig. 9. Coordinate differences (fast walking) for ZUPT correction

Fig. 10. Coordinate differences (fast walking) for ZUPT and ZARU

corrections

Table 3

Coordinate differences (fast walking) for ZUPT correction

dx dy

MIN (cm) 0 0

MAX (cm) 305 206

AVERAGE (cm) 57 49

STDEV (cm) 68 56

Table 4

Coordinate differences (fast walking) for ZUPT and ZARU corrections

dx dy

MIN (cm) 0 0

MAX (cm) 302 199

AVERAGE (cm) 59 48

STDEV (cm) 67 55

Table 5

Distance differences

Reference
distance (cm)

slow slow fast fast

ZUPT ZUPT and ZARU ZUPT ZUPT and ZARU

9048 9130 9205 9030 9003

Error % 0.9% 1.73% 0.2% 0.5%

4. Conclusions

We proposed a PDR indoor positioning with step detection

based on foot-mounted IMU. The research contains initial

alignment with accelerometers and magnetometers, step de-

tection using accelerometers and gyroscopes, and EKF with

ZUPT and ZARU.

Several tests with an Xsens IMU device have been per-

formed in order to evaluate the performance of the proposed

method.

The final results show that the dead reckoning positioning

average position error did not exceed 0.88 m (0.2% to 1.73%

of the total traveled distance, what is very promising for fu-

ture handheld indoor navigation systems that can be used in

large office buildings, malls, museums, hospitals, etc.

Due to the inherent drift errors of accelerometers and gy-

roscopes, the velocity and position obtained by IMU are only

reliable for just a short period of time, and so other methods

have to be added to overcome the IMU drawback. Based on

this discussion, future work will focus on the following plan:

1. Using magnetometer sensors as an orientation aid to and

initializing IMU indoors;

2. Obtaining absolute positioning update indoors with other

position method, such as Map Matching, ZigBee [8], RFID

[5], WiFi [4], for the purpose of improving the accuracy

of the trajectory calculation.

Acknowledgements. The paper was supported by the

projects: Agreement on Scientific and Technological Cooper-

ation between the Government of the Republic of Poland and

the Government of the People’s Republic of China – “A Re-

search of Key Technology of MEMS/IMU/Radio Frequency

Indoor Positioning” and the international cooperation project

of MOST, No. 35–14, 2012 and the national natural science

foundation of China, Nos. 41164001 and 41374039.

REFERENCES
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