PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Improvement of cutting performance of aluminium alloy 6061

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface irregularities can result in the formation of nucleation sites for wear and cracks. Roughness is considered one of the important predictors when it comes to the performance of mechanical instruments or components. The study aimed to establish prediction models using response surface methodology (RSM) to optimise surface roughness (SR) when turning aluminium alloy 6061 with carbide insert TiCN/TiN using RSM. Design/methodology/approach RSM is a well-established method utilised by many studies in the literature to predict the machining outcomes and to choose the ideal machining parameters of specific machining processes and materials. It is an economical, practical, and relatively easy method. Moreover, it is a common method utilised in machining process modelling. Therefore, the study used RSM to develop prediction models and optimise the machining parameters to achieve the optimal surface roughness when turning aluminium alloy 6061 with carbide insert TiCN/TiN. Findings Both first and second-order models were developed and were found to be adequate according to the analysis of variance. The most contributing factor to the surface roughness was cutting speed. The contour plots have been generated and show different cutting parameter plots and how they influence the surface roughness (SR) values. Surface roughness reached its highest value when the feed rate increased, cutting depth increased, and cutting speed decreased. High cutting speed, low feed rate, and low cutting depth should be used to obtain the lowest surface roughness. Research limitations/implications Further development of contours generated by the RSM models will facilitate the selection of the ideal combination of cutting speed, feed rate, and depth to achieve optimal surface roughness. RSM is considered an efficient and convenient method, requiring little experimentation and giving highly crucial inputs and information. Practical implications Surface roughness equations clearly explain that the cutting speed and cutting feed rate are major contributors to surface roughness. Low cutting speed, high cutting depth, and feed rate correspond to a higher surface roughness. Originality/value In conclusion, reliable models for the prediction of surface roughness were developed and used to optimise the machining efficiency of aluminium alloy 6061. RSM is considered an efficient and convenient method, requiring little experimentation and giving highly crucial inputs and information.
Rocznik
Strony
258--266
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, College of Engineering, Taibah University, Al-Madinah al-Munawarah, Saudi Arabia
Bibliografia
  • [1] A. la Monaca, J.W. Murray, Z. Liao, A. Speidel, J.A. Robles-Linares, D.A. Axinte, M.C. Hardy, A.T. Clare, Surface integrity in metal machining-Part II: Functional performance, International Journal of Machine Tools and Manufacture 164 (2021) 103718. DOI: https://doi.org/10.1016/j.ijmachtools.2021.103718
  • [2] R. Rosik, N. Kępczak, M. Sikora, B. Witkowski, R. Wójcik, S. Midera, Surface roughness of the Ti-6Al-4V ELI titanium alloy after the turning process, Archives of Materials Science and Engineering 98/2 (2019) 74-80. DOI: https://doi.org/10.5604/01.3001.0013.4611
  • [3] B. Bhardwaj, R. Kumar, P.K. Singh, Surface roughness (Ra) prediction model for turning of AISI 1019 steel using response surface methodology and Box–Cox transformation, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 228/2 (2014) 223-232. DOI: https://doi.org/10.1177/0954405413499564
  • [4] B. Routara, A. Bandyopadhyay, P. Sahoo, Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation, The International Journal of Advanced Manufacturing Technology 40 (2009) 1166-1180. DOI: https://doi.org/10.1007/s00170-008-1440-6
  • [5] D. Singh, P.V. Rao, A surface roughness prediction model for hard turning process, The International Journal of Advanced Manufacturing Technology 32 (2007) 1115-1124. DOI: https://doi.org/10.1007/s00170-006-0429-2
  • [6] K.A. Al-Dolaimy, Effect of Cutting Parameters on Surface Roughness in Turning Operations, Al-Qadisiyah Journal for Engineering Sciences 9/4 (2016) 442-449.
  • [7] K. Kadirgama, M. Noor, M. Rahman, M.R.M. Rejab, C.H.C. Haron, K.A. Abou-El-Hossein, Surface roughness prediction model of 6061-T6 aluminium alloy machining using statistical method, European Journal of Scientific Research 25/2 (2009) 250-256.
  • [8] J. Chen, B. Huang, An in-process neural network-based surface roughness prediction (INN-SRP) system using a dynamometer in end milling operations, The International Journal of Advanced Manufacturing Technology 21/5 (2003) 339-347. DOI: https://doi.org/10.1007/s001700300039
  • [9] T. Alwarsamy, T. Abhinav, C.A. Krishnakant, Surface roughness prediction by response surface methodology in milling of hybrid aluminium composites, Procedia Engineering 38 (2012) 745-752. DOI: https://doi.org/10.1016/j.proeng.2012.06.094
  • [10] A. Dean, D. Voss, D. Draguljić, Response surface methodology, in: Design and analysis of experiments, Springer Texts in Statistics. Springer, Cham, 2017, 565-614. DOI: https://doi.org/10.1007/978-3-319-52250-0_16
  • [11] A.J. Makadia, J. Nanavati, Optimisation of machining parameters for turning operations based on response surface methodology, Measurement 46/4 (2013) 1521-1529. DOI: https://doi.org/10.1016/j.measurement.2012.11.026
  • [12] S. Neşeli, S. Yaldz, E. Türkeş, Optimization of tool geometry parameters for turning operations based on the response surface methodology, Measurement 44/3 (2011) 580-587. DOI: https://doi.org/10.1016/j.measurement.2010.11.018
  • [13] A. Kumar, V. Kumar, J. Kumar, Prediction of surface roughness in wire electric discharge machining (WEDM) process based on response surface methodology, International Journal of Engineering and Technology 2/4 (2012) 708-719.
  • [14] H.K. Hasan, Analysis of the effecting parameters on laser cutting process by using response surface methodology (RSM) method, Journal of Achievements in Materials and Manufacturing Engineering 110/2 (2022) 59-66. DOI: https://doi.org/10.5604/01.3001.0015.7044
  • [15] S. Zainal Ariffin, A.M. Efendee, A.A.M. Redhwan, M. Alias, A. Arifuddin, M. Kamrol Amri, M. Mohd Ali, K. Khalil, A.R.M. Aminullah, A.R. Hasnain, N.B. Baba, Optimisation of variation coolant system techniques in machining aluminium alloy Al319, Journal of Achievements in Materials and Manufacturing Engineering 113/2 (2022) 72-77. DOI: https://doi.org/10.5604/01.3001.0016.1432
  • [16] D. Puspitasari, T.L. Ginta, M. Mustapha, N. Sallih, P. Puspitasari, Statistical optimization of stress relieving parameters on closed cell aluminium foam using central composite design, Archives of Materials Science and Engineering 89/2 (2018) 55-63. DOI: https://doi.org/10.5604/01.3001.0011.7172
  • [17] A. Arifuddin, A.A.M. Redhwan, A.M. Syafiq, S. Zainal Ariffin, A.R.M. Aminullah, W.H. Azmi, Effectiveness of hybrid Al 2O 3-TiO 2 nano cutting fluids application in CNC turning process, Archives of Materials Science and Engineering 117/2 (2022) 70-78. DOI: https://doi.org/10.5604/01.3001.0016.1777
  • [18] A. El Magri, S. Vaudreuil, Optimizing the mechanical properties of 3D-printed PLA-graphene composite using response surface methodology, Archives of Materials Science and Engineering 112/1 (2021) 13-22. DOI: https://doi.org/10.5604/01.3001.0015.5928
  • [19] M. Koç, T. Özel (eds), Micro-manufacturing: design and manufacturing of micro-products, John Wiley and Sons, Hoboken, NJ, 2011.
  • [20] Y. Li, Research status and development trend of micro milling technology, Electronic Mechanical Engineering 24 (2008) 26-32.
  • [21] X. Wang, C. Feng, Development of empirical models for surface roughness prediction in finish turning, The International Journal of Advanced Manufacturing Technology 20/5 (2002) 348-356. DOI: https://doi.org/10.1007/s001700200162
  • [22] B.V. Chowdary, R. Jahoor, F. Ali, T. Gokool, Optimisation of surface roughness when CNC turning of Al-6061: application of Taguchi design of experiments and genetic algorithm, Journal of Mechanical Engineering (JMechE) 16/2 (2021) 77-91.
  • [23] S.H. Musavi, B. Davoodi, B. Eskandari, Evaluation of surface roughness and optimization of cutting parameters in turning of AA2024 alloy under different cooling-lubrication conditions using RSM method, Journal of Central South University 27/6 (2020) 1714-1728. DOI: https://doi.org/10.1007/s11771-020-4402-2
  • [24] T. Kanase, D. Jadhav, Enhancement of surface finisz for CNC turning cutting parameters by using Taguchi method. Indian Journal of Research 3/5 (2013) 88-91.
  • [25] A.M. Dean, M. Morris, J. Stufken, D. Bingham (eds), Handbook of design and analysis of experiments, Vol. 7, CRC Press, Boca Raton, 2015.
  • [26] I.L. Motta, A.N. Marchesan, R. Maciel Filho, M.R.W. Maciel, Optimization of Biomass Circulating Fluidized Bed Gasifier for Synthesis Applications using Simulation and Response Surface Methodology, Computer Aided Chemical Engineering 48 (2020) 1585-1590. DOI: https://doi.org/10.1016/B978-0-12-823377-1.50265-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e173c9d-77bf-40c6-9f3f-a2cfc84ebcf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.