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PREDICTING PERFORMANCE
IN A PaaS ENVIRONMENT:
A CASE STUDY FOR A WEB APPLICATION

This paper demonstrates how the combination of simulation and real-world
experiments can be used to aid decisions concerning the performance of a di-
stributed application. It presents a case study of performance analysis carried
out for a commercial application implementing a web-based API server for mo-
bile clients. The application was deployed on the Heroku cloud-based Platform
as a Service (PaaS). The analysis described in this paper provided information
required to choose the proper configuration of resources for the software. Simu-
lation was used in the research to identify factors crucial to the performance of
the application. This allowed for the preparation of basic experiments concen-
trating on these factors. Consequently, the basic parameters of resources crucial
for the efficiency of the application could be benchmarked at insignificant cost
and effort. This approach allows us to reliably aid decisions concerning reso-
urce configuration for an analyzed application. The simulation method used in
this research is based on the formalism of Timed Colored Petri Nets, but the
complexity of formal modeling is hidden from its users. Application developers
are able to conveniently create a high-level model of their designs and perform
simulations, while the reliability of the results is ensured by the formalism.
The paper demonstrates the usefulness of the simulation method for analyzing
real-world distributed systems.
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1. Introduction

In recent years, solutions based on distributed systems have become pervasive in com-
puter science. They are used for more than scientific applications involving parallel
high-performance computing and complex business systems. Nowadays, even relative-
ly simple applications have a distributed nature due to the micro-service development
model’, mobile clients cooperating via centralized servers, and using other different
distributed resources frequently based on cloud solutions (for example). In such an
environment, the issue of distributed system performance becomes even more impor-
tant, and it still remains a complex problem. In the case of business applications,
sustaining satisfactory efficiency is necessary to sustain revenue; therefore, tools assi-
sting application developers and maintainers in assessing the efficiency of distributed
applications and allowing them to observe and analyze performance-related factors
seems necessary.

This paper presents a case study of performance analysis carried out for a specific
commercial web application deployed on a cloud-based infrastructure. It demonstrates
the use of a simulation method in combination with simple benchmarks to reliably and
conveniently predict the performance of the application (depending on the configura-
tion of resources). The goal of the analysis was to aid in deciding which infrastructure
should be used to run the software. The application — a web-based API server for
mobile clients — was deployed for production use on a commercial Platform as a Se-
rvice (PaaS) provided by Heroku? on a set of lightweight containers. The decision to
be made concerned switching the application to another set of containers that were
supposed to render the whole system more efficient.

The decision could be made on the basis of benchmarks run for the complete
application; this was, however, a complex and expensive approach. Instead, simula-
tions were used to identify the most crucial aspects that impact performance. There-
after, simple benchmarks were carried out to only determine the values for important
factors. Consequently, thanks to the simulation method, it was possible to reliably
support decision which solution was best for performance of the real production ap-
plication. It was feasible in short time and with insignificant cost.

The simulation method used in this research is meant for application developers
and designed to be reliable and convenient for them. The reliability of the analysis
is provided by the formalism of Timed Colored Petri Nets (TCPN) [9], which is
the basis of the simulation. The formalism is, however, hidden from the developer
who performs the analysis — the model provided by the developer is automatically
translated to the formalism and simulated without user assistance. Consequently,
a model of the analyzed system is created on a high level of abstraction, using notions
of nets, computing nodes, programs, and processes that are natural for developers. The
method allows us to describe important parameters of our resources. Crucial elements

I http://martinfowler.com/articles/microservices.html
2 nttp://heroku.com
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of application logic (e.g., CPU load generated by process, volume of communication,
and the dependencies between them) can be easily and concisely described by means
of event-driven programming using tools that are well-suited. Therefore, creating the
model in this method — the necessary part of the analysis process — is facilitated and
limited to reflecting the most important parts of the system in the most convenient
ways. Moreover, parts of the models can be reused between subsequent works; thus,
the analysis of similar systems becomes easier with time.

The paper is organized in the following manner. Section 2 describes related work.
Section 3 briefly presents the architecture of the Heroku Platform as a Service (since it
is crucial to understand the analyzed problem). Section 4 describes the actual problem
of selecting the proper configuration of resources. Section 5 presents the model used
to perform the analysis. Section 6 is a brief overview of the simulation method used in
this research. Section 7 describes the simulations and experiments with results and
conclusions concerning the analyzed application. Section 8 presents conclusions from
the research.

2. Related work

Performance analysis of distributed systems is not a new problem. Usually, in scientific
works, one of the formal methods is used, with Petri nets (PN) [14] being a frequ-
ently selected and convenient choice. Numerous flavors of this formalism (Real-Time
Colored Petri nets [25] or Timed Colored Petri Nets [9], for example) allow for the
convenient analysis of specific classes of problems or large systems that are hard to
model with classical Petri nets. PNs can be used to perform formal analyses of sys-
tem properties, with each PN extension having its own approaches [8, 9, 11, 25]. Petri
net models are useful for more than formal analysis. A PN model is also suitable for
a simulation that allows us to observe the behavior of modeled aspects of a system
and also draw important conclusions concerning performance.

Petri nets with different extensions have been successfully used to analyze dif-
ferent types of systems, with web applications being one of them [15]. However, the
analysis is frequently based on models created by a scientist using formalism and
its primitives. Therefore, to perform such an analysis, it is necessary to be not only
familiar but rather experienced with formalism. Consequently, the methods (however
reliable) are not encouraging for application developers who usually have neither the
time nor abilities to learn and use such methods in order to perform a kind of complex
scientific work instead of application development.

Higher-level approaches to performance-related modeling were developed with
grid-related projects [6], especially when a real grid infrastructure was not yet ava-
ilable. Most of these solutions, however, were designed to analyze algorithms meant
for managing grid infrastructure [5, 16, 24, 26]. The few tools aimed at application
analysis are either strongly connected with a specific programming model (e.g., MPI
[3]) or seem not to be actively developed [1, 12]. Consequently, there is a lack of
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a developer-centric approach that would enable a performance analysis of distributed
systems.

Performance of cloud computing is an actively researched topic. Usually, it is ana-
lyzed with benchmarks. Garg et. al. [7] and Atas et. al. [2] describe a holistic approach
to benchmarking platforms, with performance being one of the considered attributes.
The main goal of these works is to provide a reliable solution to compare different
platforms and select the one that fits a user’s needs. Heroku used in this case study is
one of the platforms analyzed in [2]. The cloud platforms are also assessed in terms of
their usefulness for specific kinds of applications; e.g., for science [13, 27] or for multi-
tenant web solutions [10]. There are also works aimed at measuring the performance
of specific services depending on the configuration of specific cloud platforms [23].
Existing benchmarks are evaluated by considering their suitability for clouds and are
extended to cover all aspects of the new environment [4, 10].

Compared to the mentioned research, the case study presented in this paper
focused on two important aspects. First, the solution was specifically designed for
application developers and maintainers, allowing them to concentrate on the aspects
of their applications that are considered crucial and to aid them in assessing perfor-
mance under different circumstances. Second, the goal was to minimize the need for
performing benchmarks in order to simplify the solution while also minimizing costs
and effort. As discussed further, performing benchmarks to test specific aspects of
an application is costly and requires significant work. The case study carried out for
a web application and described in this paper showed that the required information
could be obtained faster and with less expense.

Different aspects of the simulation method used in this research [18] was presented
in previous publications. The architecture and reliability of the method (based on
TCPN) was discussed and tested in practice [20, 21]. The possibility of the more-
precise modeling of TCP transmissions was verified [17], and a first approach to the
high-level modeling of applications was published [22]. Currently, the usefulness of
the method should be demonstrated not only for laboratory experiments but also
real-world applications.

3. Heroku architecture

Heroku is a Platform as a Service designed for web applications. It enables the co-
nvenient deployment of applications implemented in most contemporary technologies.
User applications are running inside lightweight containers called dynos. A single ap-
plication can use one or more dynos of different types. The dyno type determines
its computing capability, available RAM, and price. Heroku offers different types of
dynos, from basic free configurations to advanced ones running on dedicated hosts. In
case of changing requirements, applications can be scaled by changes in the number
of exploited dynos or their types.
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Figure 1. Simplified architecture of Heroku PaaS.

As stated in documentation®, the HTTP requests sent to Heroku-hosted applica-
tions are received by a load-balancer, which forwards them to a set of routers called
routing mesh. This forms an HTTP routing layer that is responsible for receiving re-
quests and forwarding them to the proper dynos (Fig. 1). Obviously, the first criterion
of selecting the correct dyno is to ensure that it belongs to the application for which
the request is meant. However, if the application is served by more than one dyno,
the HTTP router randomly selects the one that should serve the request. Certainly,
it is not the solution that enables the most efficient use of resources [19].

4. Selecting proper dyno formation

The problem considered in this paper comes from the real need of aiding the selection
of the correct dyno formation for a web application running on Heroku. The dyno
formation defines the set of dynos used by an application — their number and types.
Precisely, the problem consisted in making the proper decision about scaling dyno
types and reducing their number for a specific application running in a production
environment.

The software analyzed in this research was a business application custom-made
for a commercial client. In one respect it was not a typical example of web software.
It served as JSON API backend for clients running on mobile devices. Most of the
client-server communication involved exchanging large chunks of JSON-encoded data
and processing them, requiring significant CPU time. The computations performed
for each request were significantly more complicated than usual in web applications.
Consequently, CPU-intensive processing was a bottleneck in this case (unlike in typical
web applications where database operations frequently cause performance issues).

3 nttps://devcenter.heroku.com/categories/heroku-architecture
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Table 1
Heroku dyno types (selected).

Dyno Type | Memory | CPU | Compute | Price/dyno-month
(RAM) | Share
standard-1x 512MB 1x 1x-4x $25
standard-2x | 1024MB 2x 4x-8x $50

The application was implemented in Ruby on Rails* and deployed to a Unicorn®

application server. There were several possible solutions when deploying a Ruby on
Rails application, and they had different support for concurrent request processing.
The Unicorn used for this application could manage multiple worker processes that
concurrently served HTTP requests. An incoming request was either assigned to an
idle worker or enqueued and served by the first available worker. Consequently, the
time of the Unicorn workers was optimally exploited. The application was running in
a production environment on resources provided by the Heroku platform.

Among the others, Heroku offered two kinds of dynos: standard-1x and
standard-2z (described in Table 1). The standard-2x dynos had two times the RAM
and were supposed to be twice as fast, meant to run double the application proces-
ses of the standard-1x dynos. They were also twice as expensive; thus, for the same
price, one could buy twice the number of standard-2z dynos or half the number of
standard-1z dynos and receive the same cumulative computing power.

The actual problem was making the following decision: should the considered ap-
plication be moved from the dyno formation consisting of six standard-1x dynos to
the formation of three standard-2x dynos? Obviously, experiments with the applica-
tion deployed for production use were not desirable. Therefore, it should have been
determined in advance not only whether the change would improve the efficiency of
the system but also what gain in performance can be expected. An answer to the last
question was necessary to assess if the improvement would justify the risks and costs
connected with the changes.

The answer to such problem could be obtained by benchmarking the application
on the two dyno formations. Properly carried out, such tests could give reliable an-
swers to all questions concerning the performance of the application. There is wide
variety of software and services that can be used to perform such benchmarks. For
instance, the free JMeter® or Gatling” can be installed locally on one or more no-
des. There are also cloud based solutions; e.g., BlazeMeter®, Flood 10, or Blitz'°,

4 nttp://rubyonrails.org/

5 http://unicorn.bogomips.org/
6 http://jmeter.apache.org/

7 http://gatling.io

8 https://www.blazemeter.com

9 nttp://www.flood.io

10 https://wuw.blitz.io
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offering complete infrastructures that are able to generate the required load. While
locally installed software can easily be used to perform basic benchmarks, the distri-
buted solutions can stress-load applications from a number of different, geographically
distributed locations. The use of such solutions is usually connected with some finan-
cial costs. This also requires one to spend some time configuring the test scenarios.
This configuration can be done either with a GUI (as in JMeter) or using a scripting
language (e.g., in Gatling). The software required to generate the workload is only
the first step required to perform benchmarks. Testing also requires the separate de-
ployment of the analyzed application, and this is also connected with the financial
costs and additional work. Finally, to obtain measurements from a test configura-
tion, monitoring software is needed. In the case of Heroku, software'! can be easily
integrated with an application, but it is saddled with further costs. Software and com-
puter infrastructures required to perform benchmarks are available, and the financial
costs can be limited by obtaining them for a short period of time. Providers of the-
se services make an effort to facilitate the configuration of test scenarios. However,
despite the conveniences and technical abilities, assembling all elements required for
the benchmarks consumes noticeable time, effort, and financial costs.

The approach used in this research served to minimize effort as well as the expen-
ses connected with analyzing a considered application. To achieve this, the first step
of the analysis was based on modeling and simulation. This allowed identifying factors
that were crucial to the performance of the application. Thereafter, basic experiments
focused on these factors could be scheduled and performed with minimal cost and ef-
fort and provide the final results.

5. Model of web application and dyno formations

Analyzing the performance of the application required a model describing how the
HTTP requests were routed inside the Heroku infrastructure and served by the appli-
cation deployed on the considered dyno formations. The simulation method required
the model to describe the resources used by the analyzed software and the basics of
software functionality. Subsequent elements of the analyzed application had to be as-
signed to specific resources (nodes) and could communicate over the network, forming
a topology corresponding to the modeled system.

5.1. Software components

In this case, the model should include the following software components:

e web client that generated HTTP requests for the application;
e heroku random HTTP router that was responsible for assigning incoming HTTP
requests to a dyno;

1 http://newrelic.com
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e unicorn-like Ruby on Rails application server modeling the algorithm used by
Unicorn to assign HTTP requests received by a dyno to a worker — web server
responsible for processing the request;

e web server modeling a single worker of the application server that received HTTP
traffic, processed the requests, and generated responses.

The simulation method enables us to create reusable parts of the application
model. Therefore, significant parts of the model from previous work [19] could be
reused in this research; to complete the components required for this analysis, only the
Unicorn application server had to be modeled. Even this model was not created from
scratch, since the model of intelligent router described in the previously mentioned
paper was used as a basis for the Unicorn model. Consequently, the model of the
application was completed in a short time and with insignificant effort.

The model of the Unicorn application server created for this research is presented
in listing 1. This is an example of simple event-driven programming; thus, it enables
us to concisely describe crucial aspects of the application activities.

The Unicorn router was modeled as a program that received a list of available
HTTP workers (variable servers) as its parameter and maintained its request queue.
It responded to two kinds of events. On the :data_received event, either a request
from a client or response from an HTTP worker could be served. Incoming requests
were put in a queue, and responses were sent to the appropriate clients. After a re-
sponse was sent, the worker that served the corresponding request was added to the
end of the list of idle servers. In both cases, a new :process_request event was re-
gistered to ensure that the router would try to serve a request from its queue. When
the :process_request event occurred, the Unicorn router had pending requests in its
queue and there were idle HT'TP workers, then the request was forwarded to the first
worker and the worker was removed from the list. Details concerning the parameters
of the send_data command were removed from the listing 1 to improve clarity.

5.2. Dyno formation

The software components of the model were assigned to the nodes that were supposed
to provide computing capabilities. CPU load caused by the web client and Heroku
HTTP routers was not the scope of this research and was omitted in the model.
Therefore, the configuration of the nodes hosting these components was not impor-
tant. Similarly, the parameters of the networks connecting subsequent nodes were not
crucial for the results, since the network was never identified as a bottleneck for the
analyzed application.

A crucial part of the infrastructure model was the group of nodes modeling
the dyno formation actually used by the application. The dynos were modeled as
individual nodes equipped in the CPUs corresponding to the dyno type. The number
of these nodes reflected the number of dynos in the formation. Each node was running
a Unicorn program from listing 1 with a specified number of HT'TP workers.
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Listing 1. Model of Unicorn HTTP router.

1 program :unicorn_router do |servers |
2 servers = servers.clone

3 request_queue = []

4 on_event :data_received do |data|
5 if data.type =— :request

6 request_queue << data

7 register_event :process_request
8

elsif data.type = :response
9 servers << data.src
10 send_data to: data.content [:from], # ... <— DATA DETAILS
11 register_event :process_request
12 else
13 raise "Unknown data type #{data.type} received."
14 end
15 end
16 on_event :process_request do
17 unless servers.empty? or request_queue.empty?
18 data = request_queue.shift
19 server = servers.shift
20 send_data to: server, # ... <— DATA DETAILS
21 register_event :process_request unless request_queue.empty?
22 end
23 end

24 end

A this point of the modeling process, a serious difficulty was encountered. Heroku
documentation did not provide a definite answer to the question of CPU configuration
available for the particular standard dynos. As quoted in Table 1 the standard-1z dyno
had 1x CPU Share and value 1x-4x in the Compute column, while the standard-2z
had 2x CPU Share and value 4x-8x in the Compute column. This, however, was not
sufficient to determine the actual number of available CPU cores, since the twice-
bigger CPU Share could be provided either by double the CPU cores or by CPUs
that are twice as fast. The operating system of a standard-1z dyno reported access
four CPU cores, but the implementation of operating system containers managing the
dynos could easily limit access to some of these CPUs. At this point, we also didn’t
have access to the standard-2x dyno and, thus, could not determine Heroku’s method
of scaling from standard-1z to standard-2z.

The method of scaling dyno sizes could be determined by tests on two types of
dynos. However, at this point, we decided to first use a simulation to verify whe-
ther the scaling method significantly impacted application efficiency. Certainly, the
twice-as-fast CPUs could contribute to faster request processing. However, considering
Unicorn’s efficient usage of numerous workers serving HT'TP requests, one could sup-
pose that an average HT'TP request could also be efficiently served on a configuration
with an increased number of CPU cores instead of an increased core speed.
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Listing 2. Model of a dyno with horizontal scaling — standard-1x dyno has CPUs with speed
factor 1 and standard-2x with speed factor 2.

1 node dyno_name do
2 4.times { cpu size }
3 end

Listing 3. Model of a dyno with horizontal scaling — standard-1z dyno has 4 CPUs and
standard-2z 8 CPUs.

1 node dyno_-name do
2 (4 % size).times { cpu 1 }
3 end

Consequently, two models of dyno formation were prepared. The models were pa-
rametrized by a size variable, with value 1 for standard-1z and value 2 for standard-2x
dynos. The first model assumed vertical scaling from standard-1x to standard-2z dy-
nos. In this model, each node representing a dyno was equipped in four CPUs with
the speed factor set to the value of the size variable (listing 2). The second variant
of the model assumed horizontal scaling from standard-1z to standard-2z dynos. In
this model, each node had 4 % size CPUs with the speed factor set to 1 (listing 3).

5.3. Runtime parameters of the application

An important challenge in modeling a distributed application is connected with the
assessment of application runtime parameters. The topology of the application com-
ponents and the most important aspects of data processing can be obtained from the
application design or implementation. The actual time required to serve an HTTP re-
quest by an application process is, however, hard to obtain this way. Obviously, each
web application copes with a diversity of requests that require different processing
times. Thus, the problem consists of determining the correct distribution of request
service times for the actual application.

For the analyzed application, the existence of production deployment solved the
problem. The application running in the production environment used performance
monitoring tools to provide the necessary information to its maintainers. Data coming
from the monitoring tool was used to provide the required histogram of request service
times presented in Figure 2 and the request rate was set to 1000 requests per minute.
Thus, the model could be used to assess application behavior under conditions as
similar to real as possible (but for the arbitrarily selected configuration of resources).
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Figure 2. Histogram of HT'TP request service times for the application obtained from
monitoring of the production environment and provided as input for the simulation
method.

6. Simulation method overview

Solutions applied to enable a simulation of the high-level model are complicated; a de-
tailed description of the simulation method certainly exceeds the scope of this paper.
Moreover, complete knowledge about the method is not required to comprehend the
presented results and advantages of the approach. However, a brief description of
the concepts was provided in order to facilitate understanding of the nature of the
research described in this paper.

interpret DSL statements

DSL interpreter <
o v
program :web do \'
event :data_received do X
log "Received request"” ;
end
end I TCPN Simulator
e,

Model described in DSL

Executable model
in Timed Colored Petri Nets
(contains DSL statements) events

Figure 3. Concept of the simulation method.

The basic concepts of the method are illustrated in Figure 3. The DSL description
of the high-level model presented in Section 5 is interpreted to generate an executable
model expressed in the formalism of Timed Colored Petri Nets. The resulting TCPN
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models the system that should be analyzed. Different parameters of the system in
this model are still described with DSL statements provided in the high-level model.
These statements are interpreted (evaluated) while the TCPN is being simulated.
Thus, the values of specific parameters of the model can be determined on the basis
of the model state that is changing during simulation. For instance, a block of code
returning CPU processing time for a request from a remote process is evaluated only
when the :data_received event for this request occurs and the parameters of the
request are known.

The simulation produces stream of events corresponding to the activity of the
modeled application (e.g., data reception, request processing, start of network trans-
mission, obtaining CPU time). These events supplemented with additional informa-
tion (e.g., occurrence time) can be interpreted to understand the behavior of the
system and to compute performance indexes.

7. Combining simulations with experiments

7.1. ldentifying performance factors

The main part of this research used simulations based on the model from Section 5 and
run on a local workstation. The simulation enabled the observation of a large variety of
events that occurred in the analyzed system. However, in order to reliably compare the
results for different configurations, a collective efficiency index for the whole simulation
was required. In this work, two values were used. The first was the average request
service time computed for the whole experiment, and the second was Apdex!?, which
better reflected a user’s experience concerning efficiency. The value of Apdex; was
computed using formula (1), where ¢ is the request time threshold, S; denotes the
number of requests served in a time not longer than ¢ (satisfactory service time), T}
is the number of requests with service time above ¢ but not greater than 4¢ (tolerated
service time), and F; is the number of requests served in times exceeding 4t (frustrating
service time). Apdex gives prominence to the requests served in a satisfactory time to
the ones that cause impatience and (frequently) the resignation of a user. The value
of threshold ¢ should match the expected request service time for an application. In
this case study, the use of Apdex was additionally justified by the fact that it was
the main performance index used on Heroku. Consequently, it was the main indicator
of efficiency observed for the production deployment of the analyzed application.
Additionally, we observed the maximal queue length of the Unicorn application servers
to assess its connection with efficiency of the whole application reported by the other
indexes.
St + % 1
Sy + 1T + F; (1)
The first simulations were performed with the assumption that standard-1z dy-
nos were scaled to standard-2z vertically; thus, the model from listing 2 was used.

Apdex; =

12 http://apdex.org
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Both performance indexes for this case showed that, if the standard-2x dynos were
equipped in CPUs that could serve every request twice faster than the standard-1z,
the performance of the whole application would significantly benefit from switching to
the standard-2z-based dyno formation. It could be concluded from the Apdex values
(computed for threshold time 0.3 s) presented in Figure 4 that, for the standard-2x
dynos, they were as close to 1 as possible for this setup, while for the standard-1z-
based dyno formation, it settled below 0.8. Values of the average request service time
(Fig. 5) confirmed this conclusion. The average times for standard-2z-based dyno for-
mation were twice as short. We could also notice that, for both dyno formations,
adding more than 3-4 workers per dyno did not improve the performance of the ap-
plication. This value corresponded to the number of CPUs assigned to each dyno in
the simulations. All simulations were repeated 30 times, and the presented results are
the average values of all executions.

Apdex [0.3s] Avg. request service time [ms]
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Figure 4. Apdexg 3s for vertically scaled dy-  Figure 5. Average request service time for
nos. vertically scaled dynos.

The second set of simulations was run for the assumption of horizontal scaling.
The standard-2z dynos were equipped in twice as many CPUs than the standard-1z
ones, as in listing 3. From the results of this simulation presented in Figure 6 and 7,
it could be noticed that no performance gain could be achieved by switching from
a standard-1z-based to standard-2z-based dyno formation in this case. For such
a small formation, the more-efficient load balancing offered by Unicorn for workers
on particular dynos did not have a significant impact on performance (despite the
inefficiency of Heroku’s random routing). For the reasonable number of 4-5 workers
per dyno, Apdex as well as the average request service time showed the same values
for both dyno formations.

Besides the performance indexes, we also observed the values of the maximum
queue length for the Unicorn application servers (Fig. 8 and 9). It appeared, however,
that there was no performance gain for more than 3-4 workers per dyno, but 6-7
workers per dyno were required in order to ensure that requests were not queued at
this level. This suggested two conclusions. First, it confirmed that the application in
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these experiments was significantly loaded; thus, the previous results were not skewed
by the fact that, at some point, the infrastructure was able to serve significantly more
requests then it received. Second, since there was no performance gain for more than
4 dynos, the only advantage of having more workers was that the HTTP requests
were dequeued from the Unicorn queue. Their processing was, however, immediately
stopped at the operating system level, since there were not enough CPUs to serve
them in parallel processes. Thus, it would be useless to derive performance conclusions
concerning the application only on the basis of Unicorn queue length and aiming at
configurations ensuring empty queues.

Apdex [0.3s] Avg. request service time [ms]
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Figure 6. Apdexq.3s for horizontally scaled  Figure 7. Average request service time for
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Figure 8. Maximum Unicorn queue length  Figure 9. Maximum Unicorn queue length
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7.2. Determining actual infrastructure parameters

An important conclusion at this stage of the research was that the unknown method
of dyno scaling was crucial for the efficiency of the application. In order to make the
correct decision about which dyno formation would be best for the analyzed system, it
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was necessary to verify which method of scaling was chosen by Heroku. As it could not
be found in Heroku’s documentation, we performed basic experiments. One instance
of each of the two types of dynos (standard-1z and standard-2z) were purchased. On
each of them, two kinds of experiments were performed using a simple CPU-intensive
task from listing 4. Real times and CPU times were measured and compared.

Running basic tests on Heroku dynos was not technically complicated. The source
code of the required programs and shell scripts was committed to a git repository and
pushed to the dyno filesystem. Thereafter using the Heroku client, proper commands
were started. Time was measured either using the value returned by the function from
listing 4 or using the operating system time command.

Listing 4. CPU-intensive task used to test dyno scaling method.

def cpu_intensive_task(n)
start = Time.now
(1..n).reduce (:%)
Time.now — start

end

Uk W N -

First, a single CPU intensive task (listing 4) was run on each type of dyno. Run
times for both dyno types were comparable, suggesting that the dynos were not scaled
vertically. Thus, a set of 16 tasks was run on each dyno type, and the total time was
measured. The time for standard-2x dyno was about twice as short; therefore, it could
be concluded that the dynos were scaled horizontally — the standard-2z had twice as
many CPUs than the standard-Iz.

Another useful conclusion that was derived from these simple tests came from
observations of real-time and user/system time reported by the Unix time command.
The experiments showed that the real time for the standard-1z was about one half of
the user and system time, while for the standard-2z, it was about one quarter of the
user and system time. Thus, it could be concluded that, unlike in our assumptions,
the standard-1x dynos were equipped in two CPUs and the standard-2z in four CPUs.

Results of the experiment showed that the dynos were scaled horizontally from
the standard-1z to standard-2z types. Therefore, on the basis of simulations for this
case, it could be concluded that switching an application from siz standard-1x to three
standard-2x dynos would not result in a performance gain and, thus, was not justified.

7.3. Summary of the results

The first part of the research based on the simulation allowed us to verify how the
performance of the analyzed system depended on the dyno formation. It was deter-
mined that, to make the proper decision concerning the choice of dyno formation,
it was crucial to know how the dynos were scaled from standard-1z to standard-2z.
Additionally, the HTTP request queue length of the application servers was analyzed.
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Conclusions from the simulations were used to decide which experiments should
be carried out to verify crucial aspects of application performance. Consequently, it
was possible to plan very basic tests that consumed insignificant time and generated
minor costs. All actual experiments were prepared and carried out in a few hours and
cost about $0.09.

8. Conclusions

This paper presented a performance analysis case study for a web application deploy-
ed in the Heroku PaaS environment. It was demonstrated how the simulation method
described in [18] can be connected with real-world experiments to aid decisions con-
cerning the performance of distributed applications. The modeling process required to
carry out simulations was facilitated by reusing fragments of previously defined mo-
dels from previous research [19] and, thus, did not require significant effort. Similarly,
simulations of the analyzed case could be quickly performed on a PC.

Results of simulations allowed us to develop the most efficient experiments to
determine factors crucial for the performance of an application. Consequently, the
experiments could also be performed without unnecessary costs and effort. The com-
bination of modeling, simulation, and real-world experiments aided one’s decision
concerning the proper choice of dyno formation for a distributed application.

The simulation method used in this research proved to be a convenient instru-
ment. It allowed us not only to save time and effort that would be necessary to perform
benchmarks of the real application, but also to reduce the costs of the required real-
world experiments.

Nowadays, while even comparably simple applications are frequently deployed to
a PaaS based on a cloud solutions and, thus, based on distributed infrastructure, the
distributed nature of computer systems has become pervasive. Especially, that cur-
rently deployed applications frequently integrate third-party distributed services to
easily provide their functionality to the clients. Since the performance of applications
is (and most probably will remain) a crucial issue, it seems that there is a strong need
to provide developers with a method that allows them to easily identify performance
issues in their products without complex scientific work but by using primitives na-
tural for them. The usefulness of such a method was demonstrated in this paper on
the example of a real-world application.
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