PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diary biogas as fuel for a Molten Carbonate Fuel Cell – initial study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on 0-D mathematical modeling and numerical simulations, influences of diary biogas on Molten Carbonate Fuel Cell (MCFC) performance are presented. The governing equations of the MCFC model are presented, the equations were utilized for an adequate simulator construction. An analysis of diary biogas as fuels for MCFC is presented. The results are compared with Natural Gas (NG) as a reference fuel. The diary biogas is characterized by both lower efficiency and lower fuel utilization factors in comparison with NG.
Rocznik
Strony
161--168
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Poland
autor
  • Textile Research Institute, Poland
autor
  • Technical University of Lodz, Faculty of Process and Environmental Engineering, Polnad
Bibliografia
  • [1] D. Bakalis, A. Stamatis, Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation, Applied Energy 103 (2013) 607–617.
  • [2] P. Pianko-Oprych, Z. Jaworski, Numerical modelling of the micro-tubular solid oxide fuel cell stacks [przegląd metod modelowania numerycznego mikrorurowych stał otlenkowych stosów ognhw paliwowych], Przemysł Chemiczny 91 (9) (2012) 1813–1815.
  • [3] H. Marzooghi, M. Raoofat, M. Dehghani, G. Elahi, Dynamic modeling of solid oxide fuel cell stack based on local linear model tree algorithm, International Journal of Hydrogen Energy 37 (5) (2012) 4367–4376.
  • [4] K. Chaichana, Y. Patcharavorachot, B. Chutichai, D. Saebea, S. Assabumrungrat, A. Arpornwichanop, Neural network hybrid model of a direct internal reforming solid oxide fuel cell, International Journal of Hydrogen Energy 37 (3) (2012) 2498–2508.
  • [5] S. Bozorgmehri, M. Hamedi, Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm, Fuel Cells 12 (1) (2012) 11–23.
  • [6] J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition, International Journal of Hydrogen Energy 38 (5) (2013) 2407–2412.
  • [7] D. Sanchez, R. Chacartegui, J. M. de Escalona, A. Munoz, T. Sanchez, Performance analysis of a MCFC & supercritical carbon dioxide hybrid cycle under part load operation, International Journal of Hydrogen Energy 36 (16) (2011) 10327 – 10336.
  • [8] H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong, S. Lee, A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kw mcfc power plant, International Journal of Hydrogen Energy 37 (15) (2012) 11394–11400.
  • [9] G. De Lorenzo, P. Fragiacomo, Electrical and electricalthermal power plants with molten carbonate fuel cell/gas turbine-integrated systems, International Journal of Energy Research 36 (2) (2012) 153–165.
  • [10] C.-G. Lee, D.-H. Kim, H.-C. Lim, Electrode reaction characteristics under pressurized conditions in a molten carbonate fuel cell, Journal of the Electrochemical Society 154 (4) (2007) B396–B404.
  • [11] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, S. Proietti, Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment, International Journal of Greenhouse Gas Control 9 (2012) 372–384.
  • [12] Bartela, A. Skorek-Osikowska, J. Kotowicz, Integration of a supercritical coal-fired heat and power plant with carbon capture installation and gas turbine, Rynek Energii 100 (3) (2012) 56–62.
  • [13] K. Janusz-Szymańska, Economic efficiency of an igcc system integreted with ccs installation [efektywność ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz z instalacjaą CCS], Rynek Energii 102 (5) (2012) 24–30.
  • [14] W. Bujalski, Optimization of electricity and heat generation in large chp plant equipped with a heat accumulator, Rynek Energii 101 (4) (2012) 131–136.
  • [15] A. Sobolewski, . Bartela, A. Skorek-Osikowska, T. Iluk, Comparison of the economic efficiency of chp plants integrated with gazela generator [porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego gazela], Rynek Energii 102 (5) (2012) 31–37.
  • [16] J. Kupecki, J. Jewulski, K. Badyda, Comparative study of biogas and dme fed micro-chp system with solid oxide fuel cell, Applied Mechanics and Materials 267 (2013) 53–56.
  • [17] P. Lunghi, R. Bove, U. Desideri, Life-cycle-assessment of fuel-cells-based landfill-gas energy conversion technologies, Journal of Power Sources 131 (1–2) (2004) 120 –126.
  • [18] R. Bove, P. Lunghi, Experimental comparison of mcfc performance using three different biogas types and methane, Journal of Power Sources 145 (2005) 588–593.
  • [19] S. Trogisch, J. Hoffmann, L. Bertrand, Operation of molten carbonate fuel cells with different biogas sources: A challenging approach for field trials, Journal of Power Sources 145 (2005) 632–638.
  • [20] M. Krumbeck, T. Klinge, B. Doging, First european fuel cell installation with anaerobic digester gas in a molten carbonate fuel cell, Journal of Power Sources 157 (2006) 902–905.
  • [21] R. Ciccoli, V. Cigolotti, R. L. Presti, E. Massi, S. McPhail, G. Monteleone, A. Moreno, V. Naticchioni, C. Paoletti, E. Simonetti, F. Zaza, Molten carbonate fuel cells fed with biogas: Combating h2s,Waste Management 30 (6) (2010) 1018 – 1024.
  • [22] F. Zaza, C. Paoletti, R. LoPresti, E. Simonetti, M. Pasquali, Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications, Journal of Power Sources 195 (13) (2010) 4043 – 4050.
  • [23] F. Zaza, C. Paoletti, R. LoPresti, E. Simonetti, M. Pasquali, Multiple regression analysis of hydrogen sulphide poisoning in molten carbonate fuel cells used for waste-to-energy conversions, International Journal of Hydrogen Energy 36 (13) (2011) 8119 – 8125.
  • [24] S. Patil, N. Ghasghse, A. Nashte, S. Kanase, R. Powar, Anaerobic digestion treatment of cheese whey for produc-tion of methane in a two stage upflow packed bed reactor, International Journal of Advanced Science 1 (2012) 1–7.
  • [25] G. Lastella, C. Testa, G. Cornacchia, M. Notornicola, F. Voltasio, V. K. Sharma, Anaerobic digestion of semisolid organic waste: Biogas production and its purification, Energy Conservation & Management 43 (2002) 63–75.
  • [26] D. Chynoweth, J. Owens, R. Legrand, Renewable methane from anaerobic digestion of biomass, Renewable Energy 22 (2001) 1–8.
  • [27] Hyprotech Corporation, HYSYS.Plant Steady State Modelling (1998).
  • [28] J. Milewski, M. Wołowicz, A. Miller, An alternative model of molten carbonate fuel cell: A proposal, in: EmHyTeC 2012, no. P.1-34, 2012, pp. 130–132.
  • [29] H. Morita, M. Komoda, Y. Mugikura, Y. Izaki, T. Watanabe, Y. Masuda, T. Matsuyama, Performance analysis of molten carbonate fuel cell using a li/na electrolyte, Journal of Power Sources 112 (2) (2002) 509 – 518.
  • [30] T. Wolf, G. Wilemski, Molten carbonate fuel cell performance model, Journal of Electrochemical Society 30 (1983) 48–55.
  • [31] J. Milewski, K. Świrski, M. Santarelli, P. Leone, Advanced Methods of Solid Oxide Fuel Cell Modeling, 1st Edition, Springer-Verlag London Ltd., 2011.
  • [32] J. Milewski, J. Lewandowski, Comparative analysis of time constants in solid oxide fuel cell processes – selection of key processes for modeling power systems, Journal of Power Technologies 91 (1) (2011) 1–5.
  • [33] W. Budzianowski, Role of catalytic technologies in combustion of gaseous fuels, Rynek Energii 82 (3) (2009) 59–63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e1304cb-2911-4822-b93f-f74db4ce0ac0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.