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1. Introduction

In recent years, sliding mode control has become a popular 
regulation technique as a result of its computational efficiency 
and robustness guarantee [1–13]. In the first place this method 
was analyzed on continuous systems [14, 15]. Further, discrete 
time systems [16–18] were considered due to their wide appli-
cation in practice. In order to apply the sliding mode control 
technique we start with choosing parameters of the sliding 
hyperplane. These parameters determine the eigenvalues of the 
closed-loop system matrix, which is connected with the sys-
tem dynamics. The main goal is to control the system in such 
a way that the representative point will reach that predefined 
hyperplane and remain in its certain neighborhood. The con-
trol signal is usually computed using one of two well-known 
methods. In the first one the control law, which guarantees the 
stable sliding motion is introduced. The other one involves the 
so-called reaching law technique. In this approach the control 
signal is computed in order to satisfy a predefined evolution of 
the sliding variable. Originally, the reaching law method was 
introduced for continuous time systems [19], and then deve-
loped for discrete time ones [20]. Recently, a large number of 
new reaching laws were presented [21–30].

The sliding mode control can be divided in two phases: the 
reaching phase and the sliding phase. The first one refers to 
the evolution of the representative point from the initial posi-
tion to the predefined sliding hyperplane. The second one is 
connected with the motion of the state point along the sliding 
manifold to the destination point. During the control process 
external disturbances may interfere with the behavior of the 
representative point and cause large values of state variables 

or oscillations. In the sliding phase, the impact of disturbances 
implicates the quasi-sliding mode i.e. the representative point 
cannot move precisely along the sliding hyperplane, but it 
can stay in a certain neighborhood of that hyperplane. In this 
paper we define the quasi-sliding mode [24, 31, 32], i.e. we do 
not require crossing the sliding hyperplane in each consecu-
tive step.

The issue of limiting state variables is an important problem 
in the sliding mode control due to its frequent occurrence in 
practice [33–40]. Usually, during the sliding mode controller 
design, the problem of constraining the state variables is omit-
ted in favor of limiting the control signal. Our work focuses on 
finding the best strategy for limiting all of the state variables. 
In particular, we can select the state variables that are crucial 
to our system and constrain only these ones.

This paper is an extension of the article [41] and is organized 
as follows. Section 2 presents the sliding mode controller design 
based on the reaching law technique. Moreover, the state con-
straints problem is analyzed. The sufficient condition for the 
monotonic, finite time convergence to the sliding hyperplane 
is introduced in Section 3. Section 4 deals with the selection of 
the convergence rate of the representative point to the sliding 
hyperplane. In Section 5 the sufficient condition is extended 
to the form, which is easier to apply. A simulation example 
is presented in Section 6. Section 7 comprises the conclusions 
of this paper.

2. Sliding mode controller design

Let us consider the discrete time system affected by unknown, 
bounded external disturbances. Its dynamics is described by 
the following state equation

 x (k + 1) = Ax (k) + bu (k) + d (k), (1)

where x(k) = [x1(k), …, xn(k)]T is the state vector, A is the 
state matrix of the dimension n × n, b is the input distribu-
tion vector of dimension n × 1, u(k) is a scalar control signal,  
d(k) = [d1(k), …, dn(k)]T is the external disturbance vector and 
max |di(k)| = Di for any i ∈ {1, …, n}. Let us observe, that our 
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���&��%&)�In this paper we study the problem of state constraints in discrete time sliding mode 
control. We present a sufficient condition for the strategy that drives the representative point 
monotonically to the sliding hyperplane in finite time. The advantage of this strategy is that 
disturbances do not have to fulfill the matching conditions. Our approach is based on the so-called 
reaching law technique.  
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system does not have to fulfill the matching conditions, i.e. the 
external disturbance vector affects the whole system dynamics 
and not only the control signal. We design the discrete time 
sliding mode controller in order to obtain finite time, mono-
tonic convergence of the representative point to the sliding 
hyperplane

 s (k) = cT x (k) = 0, (2)

where cT = [c1, …, cn–1, 1]. Vector c is selected in such a way 
that cTb � 0. The quasi-sliding mode is defined likewise in [31, 
32]. This definition says that crossing the sliding hyperplane is 
not required in each consecutive step. We select the following 
reaching law in order to compute the control signal

 s (k + 1) = s (k) – Ksgn [s (k)] + cTd (k),  (3)

where K is a positive, real number and the function sgn(x) is 
given as follows
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From (1), (2) and (3) we can compute the following con-
trol signal

  (5)

In order to obtain finite time convergence to the sliding 
hyperplane, we require that

 |s (k)| – |s (k + 1)| ≥ λ, (6)

is fulfilled during the reaching phase, where λ is a real, positive 
constant. Analyzing signs of s (k), s (k + 1) and using (3) we 
can rewrite (6) in the following form

 K – cT d (k) sgn [s (k)] ≥ λ. (7)

Let us denote the biggest influence on the sliding variable 
caused by external disturbances by

 Dmax = |c1|D1 + … + |cn–1|Dn–1 + Dn. (8)

Hence, in order to fulfill (7) we require

 K – Dmax ≥ λ. (9)

Further in this paper we will modify the parameter K in 
order to include the influence of external disturbances.
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The purpose of this paper is to limit each state variable xi (k), 
i ∈ {1, …, n} for any k ∈ �. We want to immunize our system 
to external disturbances. Therefore, we alter the parameter 
K. Let us assume that the absolute value of the state variable 
xi(0) is limited by ri for any i ∈ {1, …, n}. We will calculate the 
parameter K so that if the absolute value of the state varia-
ble xi(k) is limited by ri, then the absolute value of the state 
variable xi(k + 1) is also limited by ri, i.e.

 –ri � xi(k + 1) � ri. (10)

We assume that Di < ½ ri for any i ∈ {1, …, n}. From (1) 
and (5) we get

 x(k + 1) = Ax(k) – b(cT b)–1 cTAx(k)+
 + b(cT b)–1cTx(k) – b(cT b)–1K  sgn[cT x(k)]+ d(k). (11)

Let us define the matrix G as follows

 G = A  + b(cT b)–1 (–cTA + cT) (12)

and the vector ei (dim ei = 1 × n) as the versor of the i-th 
axis of a Cartesian coordinate system, i.e. the i-th element of 
the vector ei is equal to one, while remaining elements of this 
vector are equal to zero. Then we can write the state equation 
for the i-th variable

 xi(k + 1) = ei {Gx(k) – K(cT b)–1 b sgn[cT x(k)] + d(k)}. (13)

We want to calculate the largest time-varying K which guar-
antees the fulfillment of (10). Using (13) and the substitution 
gi = eiG we get

 gi x(k) – ri + di(k) � K(cT b)–1 ei b  sgn[cT x(k)] � gi x(k) + 
 + ri + di(k).  (14)

The value of di(k) is unknown, therefore we have to require 
that the following conditions are satisfied

 gi x(k) – ri + Di � K(cT b)–1 ei b  sgn[cT x(k)] 
 � gi x(k) + ri – Di.  (15)

Let us observe, that when ei b = 0 for i ∈ {1, …, n}, then 
K has no influence on the behavior of the i-th state variable 
and (15) is true if

 – ri + Di � gi x(k) � ri – Di. (16)

16

The problem of state constraints in designing the discrete time sliding mode controller

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A  NR 4/2017



Consider the case when ei b � 0. Using (15) and analyzing 
the sign of the expression (cT b)–1 ei bsgn[cT x(k)] we obtain that 
for each i ∈ {1, …, n} the largest possible K (denoted by Ki) 
is given by the equation

 Ki = cT b(ei b)–1 sgn[cT x(k)] gi x(k) +
 + | cT b(ei b)–1 |(ri – Di).  (17)

We can observe that Ki is a function of k. Therefore, from 
now on, we will write Ki(k) instead of Ki in order to emphasize 
that it is a time-varying coefficient. From (17) we conclude that 
in order to calculate (5) it is necessary to know only the max-
imum absolute value of external disturbances and the current 
state. Therefore, the measurement of external disturbances is 
not needed.

3. Sufficient condition

In this section we will formulate and prove two theorems 
which specify the sufficient condition for Ki(k) – Dmax � λ for any  
i ∈ {1, …, n} and k ∈ � ∪ {0}.

Theorem 1. Denote by gij the expression in the i-th row and 
j-th column of the matrix G. In order to obtain Ki(k) – Dmax > 0  
in each consecutive step it is sufficient that inequalities

 

 (18)

are satisfied for any i ∈ {1, …, n}.

Proof. From (17) we observe that if
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then Ki(k) – Dmax > 0. Hence, our goal is to satisfy inequalities 
(19) for any i ∈ {1, …, n}. Let us derive the greatest possible 
value of the left-hand side of (19)
 

 
 

  (20)

Using (19) and (20) we obtain that if (18) is true, then  
Ki(k) – Dmax > 0. This ends the proof. �

In order to prove the finite time convergence of the rep-
resentative point to the sliding hyperplane we will determine 
the parameter λi such that Ki(k) – Dmax � λi > 0.

Theorem 2. Assume that (18) is satisfied. Then Ki(k) – Dmax � λi > 0  
in each consecutive step. Parameter

 λi = | cT b(ei b)–1 | [ri – Di – (|gi1|r1 + … + |gin|rn)] – Dmax  (21)

for i ∈ {1, …, n}.

Proof. One can observe that if

 gi x(k) = sgn[cTb(eib)–1] sgn[cTx(k)] (|gi1|r1 + … + |gin|rn), (22)

then (17) has the following form

 Ki(k)= |cT b(ei b)–1| [ri – Di + (|gi1|r1 + … + |gin|rn)]. (23)

Otherwise, if

 gi x(k) = – sgn[cTb(eib)–1] sgn[cTx(k)] (|gi1|r1 + … + |gin|rn), (24)

then

 Ki(k)= |cT b(ei b)–1 | [ri – Di – (|gi1|r1 + … + |gin|rn)]. (25)

Noting that |gij|rj > 0 for any j ∈ {1, …, n} we conclude that

 ri  – Di  + (|gi1|r1 + … + |gin|rn) > ri  –  Di –  (|gi1|r1 + …  +  |gin|rn). (26)

Using (26) one can observe that if |gi x(k)| � |gi1|r1 + … + |gin|rn, 
then

 Ki(k) = | cT b(ei b)–1 | [ri – Di – (|gi1|r1 + … + |gin|rn)]. (27)

It can be seen from (27) that

Ki(k) – Dmax � | cT b(ei b)–1| [ri – Di – (|gi1|r1 + … + |gin|rn)] – Dmax.      
  (28)

Furthermore, multiplying (18) by |cT b(ei b)–1| we obtain

  |cT b(ei b)–1 | [ri – Di – (|gi1|r1 + … + |gin|rn)] – Dmax > 0. (29)

Hence, the representative point arrives to the neighborhood 
of the sliding hyperplane in finite time and the parameter λi 
is of the form (21). This ends the proof. �
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In this section we will formulate a theorem, which states that 
choosing a smaller value of K(k) does not affect the fulfillment 
of the state constraints.

Theorem 3. Assume that Ki(k) > Dmax, i ∈ {1, …, n} is defined 
by (17). Then for any K(k) ∈ (Dmax; Ki(k)] the limit condition 
is fulfilled for the i-th state variable.
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Proof. Let us define the parameter Kε(k) as follows

Kε(k) = cTb(eib)–1 sgn[cTx(k)] gix(k) + |cTb(eib)–1|(ri – Di – ε).  
  (30)

For any K(k) ∈ (Dmax; Ki(k)] there exists ε � 0 such that  
Kε(k) = K(k).  Note that Kε(k) < Ki(k). From (13) and (30) 
we have
 x(k + 1) = Gx(k) – (eib)–1 bgix (k) +  
 + d(k) – sgn(cTb) sgn [cT x(k)] |(eib)–1 |b(ri – Di – e). (31)

Multiplying both sides of (31) by ei we obtain

xi(k + 1) = – sgn(cTb) sgn[cTx(k)] sgn(eib)(ri – Di – ε)  +  di(k).  
  (32)

Therefore, using the equation Di = max |di(k)| we conclude 
that

xi(k + 1) ∈ [ – sgn(cTb) sgn[cTx(k)] sgn(eib)(ri – Di – ε) – Di 
 – sgn(cTb) sgn[cTx(k)] sgn(eib)(ri – Di – ε) + Di].  (33)

One can observe that – sgn(cTb) sgn[cTx(k)] sgn(eib) can 
only be equal to –1, 0 or 1. Furthermore, the maximum value 
of ε has to be smaller or equal to 2ri – 2Di. Hence,

 – ri + ε � xi(k + 1) � ri – ε. (34)

Therefore, the constraint of the state variable xi is satisfied. 
This ends the proof. �

Our goal is to satisfy all of the state constraints and select 
the largest value of K(k). Hence,

 K(k) = min{K1(k), …, Kn(k)}. (35)

From (35) and inequalities Ki – Dmax > λi for any i ∈ {1, …, n}  
we conclude that K(k) – Dmax ≥ λ = min{λ1, …, λn}. Therefore, 
the finite time convergence to the sliding hyperplane, without 
violating the state constraints is obtained.
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����
,��	�������

�
condition

In this section we will weaken the sufficient condition presented 
in this paper. Let us observe that it is possible that 

  

and Ki – Dmax > 0. 

We can rewrite (17) in the following form

 Ki = sgn[cT b(eib)–1 cT x(k)gix(k)] | cTb(eib)–1| ⋅ |gix(k)| + 

 +|cTb(eib)–1|(ri – Di). (36)

Hence, if sgn[cTb(eib)–1 cTx(k)gix(k)] = 1, then

 Ki – Dmax � | cTb(ei b)–1 | (ri – Di) – Dmax > 0. (37)

Denote by +
iX  and −

iX  subsets of the state space in which

 sgn[cTb(eib)–1 cTx(k)gix(k)] = 1, (38)

 sgn[cTb(eib)–1 cTx(k)gix(k)] = –1 (39)

respectively, and

Fig. 1. First state variable
Rys. 1. Pierwsza zmienna stanu

Fig. 2. Second state variable
Rys. 2. Druga zmienna stanu
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 |xi| � ri (40)

for the i-th state variable. −
iX  is the only set in which 

Ki – Dmax may take a negative value.

Theorem 4. In order to obtain Ki – Dmax ≥ λ > 0 and |xi| � ri  
it is sufficient that inequalities

 

 (41)

and

 
( ) 1T
maxmax −

∈
+−≤

+ bebc
xg

i
iii

Xx

DDr
i

 (42)

are satisfied for any i ∈ {1, …, n}.

Proof. Let −∈ iXx , i.e. sgn[cT b(eib)–1 cT x(k)gix] = –1. Hence, 
(36) is of the form

 Ki = – | cT b(eib)–1|⋅|gix| + | cT b(eib)–1|(ri – Di). (43)

Therefore, if 

 
( ) 1T
maxmax

−∈ −−<−

bebc
xg

i
iiiXx

DDr
i

, 

then Ki – Dmax > 0 for any i ∈ {1, …, n}. Moreover, if x = 0 then 
Ki = | cT b(eib)–1|(ri – Di). Using (41) one can observe that in 
this case Ki – Dmax > 0. If −∉ iXx , then Ki >|cT b(eib)–1|(ri – Di).
From previous considerations Ki – Dmax > 0 for any i ∈ {1, …, n}.

Proving the fact that Ki – Dmax ≥ λ > 0 is similar to the 
proof of the Theorem 2.

We have to guarantee that the minimal possible conver-
gence rate, that satisfies the i-th state constraint which is 
equal to

 cT b(eib)–1 sgn[cT x(k)] gix(k) – | cT b(eib)–1|(ri – Di). (44)

has to be lower or equal to Dmax. Otherwise, the selected K(k) 
does not have to satisfy at least one of the state constraints, 
even if it would drive the representative point monotonically 
to the sliding hyperplane in finite time.

If −∈ iXx , then (44) is negative, so we can only consider 
our condition in the set +

iX . Therefore, we want to satisfy 
inequalities

 |cT b(eib)–1|  (gix(k) – ri  + Di) �  Dmax (45)

for any i ∈ {1, …, n}. We can rewrite (45) in the form of (42), 
which ends the proof. 
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Consider the system given by (1), where

 

 (46)

In order to apply the strategy that allows us to constrain 
both state variables at level r1 = 50 and r2 = 5, we start from 
calculating the matrix

 

.
0909.00909.0

0909.09909.0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=G  (47)

Fig. 3. State trajectory
Rys. 3. Trajektoria stanu

Fig. 4. Sliding variable
Rys. 4. Zmienna ślizgowa
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We select the initial point at the intersection of lines that 
describe the upper limits of the state constraints, i.e. x(0) = [50 5]T.  
External disturbances are d1(k) = sin (k ⋅ 40 rad) and  
d2(k) = sin (k ⋅ 30 rad). One can observe, that in this example 
the matching conditions are not satisfied. In this example we 
modified the reaching law (3) to the form

 s(k + 1) = s(k) – min{K(k), |s(k)|} sgn[s(k)] + cTd(k).  (48)

Let us observe, that in the special case if external distur-
bances are equal to zero, then the representative point is 
driven precisely on the sliding hyperplane. After calculations 
we obtain that (41) and (42) are true. Moreover,

 
( )

.
1T

maxmax −
∈

−−>
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xg
i

iii
Xx

DDr
i

 (49)

Hence, we conclude that in our example (18) is not satis-
fied, which shows that in this paper the previous sufficient 
condition was weakened. From Fig. 1 one can observe that 
the first state variable is always smaller than 50. In addi-
tion, after a certain period of time it reaches the neighbor-
hood of its demand value and remains in it. The evolution 
of the second state variable is shown in Fig. 2. Starting from 
its initial value 5 it decreases, but is always greater than 
its minimal admissible value equal to –5. Further, the sec-
ond state variable increases to its demand value. Figure 3 
presents the trajectory of both state variables. In our exam-
ple r2 – D2 = 4. Therefore, the control strategy causes that 
the second state variable may take a value from the interval  
[–4, 4], without the influence of external disturbances. Hence, 
in the presence of perturbations (D2 = 1), the second state 
variable in the worst case will reach the value –5. From Fig. 4 
we can observe that the monotonic convergence to the sliding 
hyperplane in finite time is obtained. The representative point 
is not driven precisely on the sliding hyperplane, due to the 
occurrence of disturbances. During the sliding phase the slid-
ing variable may take a value from the interval [–Dmax, Dmax].
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In this paper the issue of limiting the state variables in discrete 
time sliding mode control influenced by perturbations was 
analyzed. In our system external disturbances did not have 
to fulfill the matching conditions, which is beneficial from the 
practical point of view. Sufficient condition for the fastest, 
monotonic convergence of the representative point to the sli-
ding hyperplane in finite time was introduced. A simulation 
example was presented in order to illustrate theoretical consi-
derations. In the future we are going to improve our approach 
by involving the impact of the initial conditions and modify 
constant state constraints to the function form.
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0&����%�����)�W artykule przeanalizowany został problem ograniczenia zmiennych stanu 
w dyskretnym sterowaniu ślizgowym. Do zaprojektowania regulatora zastosowano regułę osiągania 
ruchu ślizgowego. Zaprezentowano warunek dostateczny na monotoniczną zbieżność stanu obiektu 
do płaszczyzny ślizgowej w skończonym czasie. Zaletą przedstawionej metody jest to, że zakłócenia 
nie muszą spełniać warunków dopasowania. 
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