Pomiary Automatyka Robotyka, ISSN 1427-9126, R. 21, Nr 4/2017,15-22, DOI: 10.14313/PAR_226/15

The problem of state constraints in designing
the discrete time sliding mode controller
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Abstract: In this paper we study the problem of state constraints in discrete time sliding mode
control. We present a sufficient condition for the strategy that drives the representative point
monotonically to the sliding hyperplane in finite time. The advantage of this strategy is that
disturbances do not have to fulfill the matching conditions. Our approach is based on the so-called

reaching law technique.
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1. Introduction

In recent years, sliding mode control has become a popular
regulation technique as a result of its computational efficiency
and robustness guarantee [1-13]. In the first place this method
was analyzed on continuous systems [14, 15]. Further, discrete
time systems [16-18] were considered due to their wide appli-
cation in practice. In order to apply the sliding mode control
technique we start with choosing parameters of the sliding
hyperplane. These parameters determine the eigenvalues of the
closed-loop system matrix, which is connected with the sys-
tem dynamics. The main goal is to control the system in such
a way that the representative point will reach that predefined
hyperplane and remain in its certain neighborhood. The con-
trol signal is usually computed using one of two well-known
methods. In the first one the control law, which guarantees the
stable sliding motion is introduced. The other one involves the
so-called reaching law technique. In this approach the control
signal is computed in order to satisfy a predefined evolution of
the sliding variable. Originally, the reaching law method was
introduced for continuous time systems [19], and then deve-
loped for discrete time ones [20]. Recently, a large number of
new reaching laws were presented [21-30].

The sliding mode control can be divided in two phases: the
reaching phase and the sliding phase. The first one refers to
the evolution of the representative point from the initial posi-
tion to the predefined sliding hyperplane. The second one is
connected with the motion of the state point along the sliding
manifold to the destination point. During the control process
external disturbances may interfere with the behavior of the
representative point and cause large values of state variables
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or oscillations. In the sliding phase, the impact of disturbances
implicates the quasi-sliding mode i.e. the representative point
cannot move precisely along the sliding hyperplane, but it
can stay in a certain neighborhood of that hyperplane. In this
paper we define the quasi-sliding mode [24, 31, 32], i.e. we do
not require crossing the sliding hyperplane in each consecu-
tive step.

The issue of limiting state variables is an important problem
in the sliding mode control due to its frequent occurrence in
practice [33-40]. Usually, during the sliding mode controller
design, the problem of constraining the state variables is omit-
ted in favor of limiting the control signal. Our work focuses on
finding the best strategy for limiting all of the state variables.
In particular, we can select the state variables that are crucial
to our system and constrain only these ones.

This paper is an extension of the article [41] and is organized
as follows. Section 2 presents the sliding mode controller design
based on the reaching law technique. Moreover, the state con-
straints problem is analyzed. The sufficient condition for the
monotonic, finite time convergence to the sliding hyperplane
is introduced in Section 3. Section 4 deals with the selection of
the convergence rate of the representative point to the sliding
hyperplane. In Section 5 the sufficient condition is extended
to the form, which is easier to apply. A simulation example
is presented in Section 6. Section 7 comprises the conclusions
of this paper.

2. Sliding mode controller design

Let us consider the discrete time system affected by unknown,
bounded external disturbances. Its dynamics is described by
the following state equation

z(k+1) = Az (k) + bu (k) + d (k), (1)

where x(k) = [z,(k), .., z (k)]" is the state vector, A is the
state matrix of the dimension n X n, b is the input distribu-
tion vector of dimension n x 1, u(k) is a scalar control signal,
d(k) = [d (k), .., d (k)]" is the external disturbance vector and
max |d(k)| = D, for any i€ {1, .., n}. Let us observe, that our
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system does not have to fulfill the matching conditions, i.e. the
external disturbance vector affects the whole system dynamics
and not only the control signal. We design the discrete time
sliding mode controller in order to obtain finite time, mono-
tonic convergence of the representative point to the sliding
hyperplane

s(k)=c"x (k) =0, (2)

where ¢* = [c,, .., ¢, 1]. Vector c is selected in such a way
that ¢™d # 0. The quasi-sliding mode is defined likewise in [31,
32]. This definition says that crossing the sliding hyperplane is
not required in each consecutive step. We select the following
reaching law in order to compute the control signal

s(k+ 1) = s (k) — Ksgn [s (k)] + c"d (k), (3)

where K is a positive, real number and the function sgn(z) is
given as follows

-1, for z<0
sgn(z) =1 0,

1, for z>0

for =0 (4)

From (1), (2) and (3) we can compute the following con-
trol signal

u(k) = (ch)_l { —c'Ax (k) + c¢'z (k) - Ksgn [CT:L' (k)} } (5)

In order to obtain finite time convergence to the sliding
hyperplane, we require that

s (B)] — [s (k+ 1] 24, (6)

is fulfilled during the reaching phase, where A is a real, positive
constant. Analyzing signs of s (k), s (k + 1) and using (3) we
can rewrite (6) in the following form

K- c"d(k)sgn [s (k)] 2\ (7)

Let us denote the biggest influence on the sliding variable
caused by external disturbances by

D =lc|D + .. +|c, ,|D

max

n-1 n-1 + Dn' (8)

Hence, in order to fulfill (7) we require

K-D >\ (9)

max
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Further in this paper we will modify the parameter K in
order to include the influence of external disturbances.

2.1. State Constraints

The purpose of this paper is to limit each state variable z, (k),
i€ {1,.., n} for any k € N. We want to immunize our system
to external disturbances. Therefore, we alter the parameter
K. Let us assume that the absolute value of the state variable
z(0) is limited by r, for any i€ {1, ..., n}. We will calculate the
parameter K so that if the absolute value of the state varia-
ble z(k) is limited by r, then the absolute value of the state
variable z(k + 1) is also limited by 7, i.e.

—r<az(k+1)<r. (10)

We assume that D, < % r, for any i € {1, .., n}. From (1)
and (5) we get

x(k+1) = Ax(k) — b(c"b) ' c"Ax(k)+

+ b(c'b)tetx(k) — b(c"b) 'K sgn[ctz(k)|+d(k).  (11)

Let us define the matrix G as follows

G=A+b(c"b)! (c"A+c") (12)

and the vector e, (dim e, = 1 X n) as the versor of the i-th
axis of a Cartesian coordinate system, i.e. the #-th element of
the vector e, is equal to one, while remaining elements of this
vector are equal to zero. Then we can write the state equation
for the #th variable

z(k+1)=e {Gx(k)- K(c" b) 'bsgn[c"z(k)] +d(k)}. (13)

We want to calculate the largest time-varying K which guar-
antees the fulfillment of (10). Using (13) and the substitution
g, = e,G we get

g,x(k) 1+ d(k)<K(c"b) *ebsgn[c’ x(k)] <g, z(k)+

+r+d(k). (14)

The value of d(k) is unknown, therefore we have to require
that the following conditions are satisfied

g,@(k)—r+D,<K(c"b) e bsgn[c" z(k)]

<g x(k)+r - D. (15)

Let us observe, that when e, b = 0 for i e {1, .., n}, then
K has no influence on the behavior of the 4th state variable
and (15) is true if

~r,+ D <gxk)<r, - D.

i

(16)
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Consider the case when e b # 0. Using (15) and analyzing
the sign of the expression (c" b) e bsgn[c’ (k)] we obtain that
for each 7 € {1, .., n} the largest possible K (denoted by K)
is given by the equation
K = c" b(e, b)"!

i

sgn(c’ x(k)] g,=(k) +

+| ¢ ble b |(r.— D). (17)

We can observe that K, is a function of k. Therefore, from
now on, we will write K (k) instead of K, in order to emphasize
that it is a time-varying coefficient. From (17) we conclude that
in order to calculate (5) it is necessary to know only the max-
imum absolute value of external disturbances and the current
state. Therefore, the measurement of external disturbances is
not needed.

3. Sufficient condition

In this section we will formulate and prove two theorems
which specify the sufficient condition for K(k)—-D, >4 for any
ie{l, .., n} and ke NU{0}.

Theorem 1. Denote by 95 the expression in the i-th row and
j-th column of the matriz G. In order to obtain K(k)- D >0
in each consecutive step it is sufficient that inequalities

D, ox
‘gil‘rl-"_ +‘gin‘rﬂ, < rz_D/ _% (18)
‘c b(eib) ‘
are satisfied for any i€ {1, .., n}.
Proof. From (17) we observe that if
D
|gix(kx<ri_Di_%a (19)
‘c bleb) ‘

then K (k) — D > 0. Hence, our goal is to satisfy inequalities
(19) for any i € {1, ..., n}. Let us derive the greatest possible

value of the left-hand side of (19)
max

k)‘ = ‘gil sgn (97:1)7"1 +...+ g, 880 (gm)rn‘ =

= ‘gll‘ 1 + + ‘gm‘ T (20)
Using (19) and (20) we obtain that if (18) is true, then
K(k)-D_ >0. This ends the proof. [ |
In order to prove the finite time convergence of the rep-
resentative point to the sliding hyperplane we will determine
the parameter A, such that K(k)-D_ > A>0.

Theorem 2. Assume that (18) is satisfied. Then K(k) - D

>\ >0
max k2
in each consecutive step. Parameter

A=|cbleb)'[[r,~ D~ (lg,lr, + ~ +lg,/r)] - D, (21)

in

forie {1, .., n}.
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Proof. One can observe that if

g, z(k)=sgn[c"b(eb) '] sgn[c"x(k)] (|g,|r,+ - +]g,|r), (22)
then (17) has the following form
K(k)=|c"b(eb) '] [r,— D, + (lg,lr, + - + [g,r)]. (23)

Otherwise, if

g, x(k)=-sgn[c"b(eb) '] sgn[cTa(k)] (|g,|r,+ .. +]g,|r,), (24)
then

K(k)=[c" bleb) " | [r,~ D~ (lg,lr, + - + |g,[7,)]-

in

(25)

Noting that |g,|r, > 0 for any je {1, .., n} we conclude that

IriiDz'_F(‘gillTl+"'+|gin|Trz) > Tﬁ7 Dz - (‘gzllrl—i_"' + ‘gm‘rn)(26)

Using (26) one can observe that if |g, (k)| <|g,|r, +..+|g,|7.,
then

K(k) = | CT b(ei b) ! ‘ [7”1.* D17 (‘gﬂl’,’l + + ‘gfn|rn)]‘ (27)
It can be seen from (27) that
K(k)iDmaxz‘ CT b(eﬁ b) ll [riiDii(‘gﬁllrlJr"'+|giﬂ,|rn)]7 max’
(28)

Furthermore, multiplying (18) by |c" b(e, b) '| we obtain

(€ ble, ) | [r,~ D, (g Ir, + - + lg,|r)] - D, >0.(29)

Hence, the representative point arrives to the neighborhood
of the sliding hyperplane in finite time and the parameter A,
is of the form (21). This ends the proof. |

4. Maximum admissible value of the
convergence rate

In this section we will formulate a theorem, which states that
choosing a smaller value of K(k) does not affect the fulfillment
of the state constraints.

Theorem 3. Assume that K(k) > D, i€ {1, .., n} is defined
by (17). Then for any K(k) € (D_ _; K(k)] the limit condition

nw’ i

is fulfilled for the i-th state variable.
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Proof. Let us define the parameter K, (k) as follows

K()

(k)=c"b(eb)* x(k)+|c'b(ed) '|(r—D¢).

(30)

sgnlc'z(k)] g

For any K(k) € (D, ; K(F)] there exists € > 0 such that
K (k) = K(k). Note that K (k) < K(k). From (13) and (30)
we have

z(k + 1) = Ga(k) — (e b)lbgw(k)Jr
|

+d(k) — sgn(c'b) sgn [¢! a:(k)f (eb) '|b(r, - (31)

D.—¢).
Multiplying both sides of (31) by e, we obtain

z(k+1)=—sgn(c"b) sgn[c"z(k)] sgn(eb)(r,—D~€) + d (k).
(32)

Therefore, using the equation D,=max |d (k)| we conclude
that

z(k+ 1) e [—sgn(c'b) sgn[c'z(k)] sgn(eb)(r,— D,~€) — D,
—sgn(c"b) sgn[c'x(k)] sgn(eb)(r,— D, &) + D). (33)

One can observe that — sgn(c"b) sgn[c"z(k)] sgn(eb) can
only be equal to —1, 0 or 1. Furthermore, the maximum value
of € has to be smaller or equal to 2r, — 2D.. Hence,

~rteszk+1)<r e (34)

Therefore, the constraint of the state variable =, is satisfied.
This ends the proof. [ ]

Our goal is to satisfy all of the state constraints and select
the largest value of K(k). Hence,

K(k) = min{K,(k), .., K (k)}. (35)

n

(8]
o

N
o

First stat:,; variable
o

1% 10  20_ 30 40 50
Time k
Fig. 1. First state variable
Rys. 1. Pierwsza zmienna stanu
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From (35) and inequalities K, - D > A, for any i€ {1, .., n}
we conclude that K(k) - D_ > = mln{k S AL Therefore
the finite time convergence to the sliding hype]rplane7 without

violating the state constraints is obtained.

5. Improvement of the sufficient
condition

In this section we will weaken the sufficient condition presented
in this paper. Let us observe that it is possible that

and K, —D_ >0.

max

gx|>1,— D, —
91 ‘Tb(eb) {

We can rewrite (17) in the following form

K= sgnle” b(e) ! ¢ a(k)ga(k)] | c'b(ed) |- |galk)| +

+|c'b(eb) !|(r,— D). (36)
Hence, if sgn[c"b(eb) ' c'z(k)gx(k)] = 1, then
K—-D  >|c'b(eb)'|(r,~D)-D_ >0. (37)

max

Denote by X; and X, subsets of the state space in which
sgnlctb(ed) ! c'x(k)gx(k)] = 1, (38)
sgn[c'b(ed) ' c'x(k)gx(k)] = -1 (39)

respectively, and
5_.... v 4

Second state variable
o

40 50

20 30
Time k

Fig. 2. Second state variable
Rys. 2. Druga zmienna stanu
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lz] <, (40)

for the #th state variable. X, is the only set in which
K. — D, may take a negative value.

Theorem 4. In order to obtain K,— D
it is sufficient that inequalities

2L >0andz|<7,

X

D,
max g <n—D; - (41)
zeX; U0 ‘c b(e,b) ‘
and
D
x| <r, —D + —2& 42
a0l £ P T o w
are satisfied for any i € {1, .., n}.

Proof. Let e X, ,i.e.sgn[c" b(eb)* c' z(k)ga] = 1. Hence,
(36) is of the form

K= | ¢ bleb) [gal + | ¢ bed)|(r, D). (43)

Therefore, if

max

e |ch(eib)_1|

IeX;|9im| <r,-D; - )

then K~ D > 0 for any i€ {1, .., n}. Moreover, if = 0 then
K = |c" b(eb) '|(r,~ D). Using (41) one can observe that in
this case K-D _>0.If z¢ X, then K. >|c" b(eb) '|(r,~ D).

From previous considerations K.~ D > 0 for any i€ {1, .., n}.

max

Second state variable
o

8o 0 20 40 60
First state variable

Fig. 3. State trajectory
Rys. 8. Trajektoria stanu
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Proving the fact that K, -~ D 2> A > 0 is similar to the
proof of the Theorem 2.
We have to guarantee that the minimal possible conver-
gence rate, that satisfies the #th state constraint which is
equal to

c” b(eb) ' sgn[c” x(k)] ga(k) | c" bled)'|(r,~ D). (44)

has to be lower or equal to D__. Otherwise, the selected K(k)
does not have to satisfy at least one of the state constraints,
even if it would drive the representative point monotonically
to the sliding hyperplane in finite time.

If xe X, then (44) is negative, so we can only consider
our condition in the set X, . Therefore, we want to satisfy
inequalities

[c"b(ed) | (gx(k)—r,+D)<D (45)

max

for any i e {1, .., n}. We can rewrite (45) in the form of (42),
which ends the proof. |

6. Simulation Example

Consider the system given by (1), where

A:Li ﬂ b:m, ¢ =[10 1].

In order to apply the strategy that allows us to constrain
both state variables at level r = 50 and r, = 5, we start from
calculating the matrix

(46)

G= (47)

0.9909 0.0909
0.0909 0.0909 |

600 5

400

w
o
o

0 10 20 30 40 50
Time k

Fig. 4. Sliding variable
Rys. 4. Zmienna slizgowa
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We select the initial point at the intersection of lines that
describe the upper limits of the state constraints, i.e. 2(0) = [50 5]".
External disturbances are d (k) = sin (k - 40 rad) and
d,(k) = sin (k - 30 rad). One can observe, that in this example
the matching conditions are not satisfied. In this example we
modified the reaching law (3) to the form

s(k+1)=s(k)-min{K(k), |s(k)|} sgn[s(k)] + c'd(k). (48)

Let us observe, that in the special case if external distur-
bances are equal to zero, then the representative point is
driven precisely on the sliding hyperplane. After calculations
we obtain that (41) and (42) are true. Moreover,

D
>r,—D, - ax

' |ch(eib)’1| '

max|9:% (49)

ze X!

Hence, we conclude that in our example (18) is not satis-
fied, which shows that in this paper the previous sufficient
condition was weakened. From Fig. 1 one can observe that
the first state variable is always smaller than 50. In addi-
tion, after a certain period of time it reaches the neighbor-
hood of its demand value and remains in it. The evolution
of the second state variable is shown in Fig. 2. Starting from
its initial value 5 it decreases, but is always greater than
its minimal admissible value equal to —5. Further, the sec-
ond state variable increases to its demand value. Figure 3
presents the trajectory of both state variables. In our exam-
ple 7, — D, = 4. Therefore, the control strategy causes that
the second state variable may take a value from the interval
[4, 4], without the influence of external disturbances. Hence,
in the presence of perturbations (D, = 1), the second state
variable in the worst case will reach the value —5. From Fig. 4
we can observe that the monotonic convergence to the sliding
hyperplane in finite time is obtained. The representative point
is not driven precisely on the sliding hyperplane, due to the
occurrence of disturbances. During the sliding phase the slid-
ing variable may take a value from the interval [-D

max’ max] :

7. Conclusions

In this paper the issue of limiting the state variables in discrete
time sliding mode control influenced by perturbations was
analyzed. In our system external disturbances did not have
to fulfill the matching conditions, which is beneficial from the
practical point of view. Sufficient condition for the fastest,
monotonic convergence of the representative point to the sli-
ding hyperplane in finite time was introduced. A simulation
example was presented in order to illustrate theoretical consi-
derations. In the future we are going to improve our approach
by involving the impact of the initial conditions and modify
constant state constraints to the function form.
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Ograniczenie zmiennych stanu w dyskretnym sterowaniu slizgowym

Streszczenie: w artykule przeanalizowany zostat problem ograniczenia zmiennych stanu

w dyskretnym sterowaniu slizgowym. Do zaprojektowania regulatora zastosowano regute osiggania
ruchu slizgowego. Zaprezentowano warunek dostateczny na monotoniczng zbieznos¢ stanu obiektu
do ptaszczyzny slizgowej w skoriczonym czasie. Zaletg przedstawionej metody jest to, ze zaktdcenia
nie muszg spefnia¢ warunkow dopasowania.

Stowa kluczowe: sterowanie 0 zmiennej strukturze, sterowanie slizgowe, ukiady czasu dyskretnego, ograniczenia zmiennych stanu, requta osiggania ruchu slizgowego
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