PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modelling of Static Aeroelastic Deformations of Slender Wing in Aerodynamic Design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the validation of two methods for analyzing the aerodynamic properties of the aircraft wing concerning aeroelastic effects. The first method is based on low-cost computational models (Euler-Bernoulli Beam Model and Vortex Lattice Method [VLM]). Its primary objective is to estimate the wing’s deformation early in the design stages and during the automatic optimization process. The second one is a method that uses solutions of unsteady Navier-Stokes equations (URANS). This method suits early design, particularly for unconventional designs or flight conditions exceeding low-fidelity method limits. The coupling of the flow and structural models was done by Radial Basis Functions implemented as a user-defined module in the ANSYS Fluent solver. The structural model has variants for linear and nonlinear wing deformations. Features enhancing applicability for real-life applications, such as the definition of deformable and nondeformable mesh zones with smooth transition between them, have been included in this method. A rectangular wing of a high-altitude long-endurance (HALE) aeroplane, built based on the NACA 0012 profile, was used to validate both methods. The resulting deflections and twists of the wing have been compared with reference data for the linear and nonlinear variants of the model.
Rocznik
Strony
52--70
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., wzory
Twórcy
  • Center of Aviation Technologies, Lukasiewicz Research Network - Institute of Aviation Warsaw, Poland
  • Center of Aviation Technologies, Lukasiewicz Research Network - Institute of Aviation Warsaw, Poland
  • Center of Aviation Technologies, Lukasiewicz Research Network - Institute of Aviation Warsaw, Poland
Bibliografia
  • [1] Zuo, Y., Chen, P., Fu, L., Gao, Z., and Chen, G. “Advanced Aerostructural Optimization Techniques for Aircraft Design”, Mathematical Problems in Engineering (2015): pp. 1-12. DOI 10.1155/2015/753042.
  • [2] Bisplinghoff, L. Raymond, Holt, Ashley, and Halfman, L. Robert, Aeroelasticity, Courier Corporation (2013).
  • [3] Lan, Chuan-Tau Edward Lan and Roskam, Jan. Airplane Aerodynamics and Performance, Roskam Aviation and Engineering (1997).
  • [4] Raymer, Daniel. Aircraft Design: A Conceptual Approach, Fifth Edition, American Institute of Aeronautics and Astronautics, Inc., Washington, DC. (2012). DOI 10.2514/4.869112.
  • [5] Karpuk, Stanislav, Liu, Yaolong, and Elham, Ali. “Multi-fidelity Design Optimization of a Long-range Blended Wing Body Aircraft with New Airframe Technologies”, Vol. 7 No. 7 (2020): p. 87. DOI 10.3390/ aerospace7070087.
  • [6] Bons, P. Nicolas, and Martins, R. R. A. Joaquim. “Aerostructural Design Exploration of a Wing in Transonic Flow”, Vol. 7 No. 8 (2020): p. 118. DOI 10.3390/aerospace7080118.
  • [7] Martins, R. R. A. Joaquim, 2022, “Aerodynamic Design Optimization: Challenges and Perspectives”, Computers & Fluids Vol. 239 (2022): p. 105391. DOI 10.1016/j.compfluid.2022.105391.
  • [8] Zhang, Yaoxin, and Jia, Yafei. “2D Automatic Body-fitted Structured Mesh Generation Using Advancing Extraction Method”, Journal of Computational Physics Vol. 353 (2018): pp. 316-335, DOI 10.1016/ j.jcp.2017.10.018.
  • [9] Reinbold, Christopher, Sørensen, Kaare, and Breitsamter, Christian. “Aeroelastic Simulations of a Delta Wing with a Chimera Approach for Deflected Control Surfaces”, CEAS Aeronautical Journal Vol. 13 No. 1 (2022): pp. 237-250. DOI 10.1007/s13272-021-00561-3.
  • [10] Feuillet, Rémi, Adrien Loseille, and Frédéric Alauzet. “Mesh Adaptation for the Embedded Boundary Method in CFD”, Research Report n°9305, Research Centresaclay - Île-De-France, Palaiseau, Nov. 2019. DOI 10.13140/RG.2.2.22343.44969.
  • [11] Selim, M., and Koomullil, R. P., 2016, “Mesh Deformation Approaches - A Survey”, Journal of Physical Mathematics Vol. 7 No. 2 (2016): 1000181. DOI 10.4172/2090-0902.1000181.
  • [12] Biancolini, E. Marco, Viola, M. Ignazio and Riotte, Matthieu. “Sails Trim Optimisation Using CFD and RBF Mesh Morphing”, Computer & Fluids, Vol. 93 No. 2 (2014): pp. 46-60. DOI 10.1016/j.compfluid.2014.01.007.
  • [13] Katz, Joseph and Plotkin, Allen. Low-speed Aerodynamics, Cambridge University Press, Cambridge (2001). DOI 10.1017/cbo9780511810329.
  • [14] Drela, Mark and Youngren, Harold “AVL Overview.” [Online]. Available: https://web.mit.edu/drela/Public/web/avl/ [Accessed: 16-Jun-2020]
  • [15] Drela, Mark, “XFOIL.” [Online]. Available: https://web.mit.edu/drela/Public/web/xfoil/ [Accessed: 13-Sep-2020].
  • [16] Andersen, Lars, and Nielsen, R. K. Søren. “Elastic Beams in Three Dimensions”, DCE Lecture Notes, Vol. 1 No. 23 (2008): p. 104. [Online]. Available: http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf
  • [17] Megson, T. H. G. Aircraft Structures for Engineering Students, Fifth Edition. Amsterdam: Elsevier (2012). DOI 10.1016/C2009-0-61214-9.
  • [18] Young, C. Warren, Budynas, G. Richard, and Sadegh, M. Ali. Roark’s Formulas for Stress and Strain, McGrawHill Companies, New York (2012).
  • [19] Bauchau, O. A., and Craig, J. I. “Structural Analysis: With Applications to Aerospace Structures”, Part of: Solid Mechanics and its Applications Vol. 163. Springer, New York (2009).
  • [20] Biancolini, Marco Evangelos. Fast Radial Basis Functions for Engineering Applications, Springer International Publishing, Rome (2017). DOI 10.1007/978-3-319-75011-8.
  • [21] Schaback, A. Robert, Chen, C. S., and Hon, Y. C. Scientific Computing with Radial Basis Functions, University of Southern Mississippi, Hattiesburg (2005).
  • [22] Cella, Ubaldo.“Setup and Validation of High Fidelity Aeroelastic Analysis Methods Based on RBF Mesh Morphing”. PhD Thesis, University of Rome “Tor Vergata,” Rome. 2017. [Online]. Available: http://ribesproject.eu/Documents/PhDthesis-UbaldoCella.pdf [Accessed: 05-Jun-2022].
  • [23] Brzoska, Zbigniew. Statyka i stateczność konstrukcji prętowych i cienkościennych (English title: Statics an Stability of Rod-like and Thin-walled structures). Państwowe Wydawnictwo Naukowe (1965).
  • [24] Rakowski, Gustaw and Kacprzyk, Zbigniew. Metoda elementów skończonych w mechanice konstrukcji (English title: Finite Element Method in Mechanics of Structures). Oficyna Wydawnicza Politechniki Warszawskiej (2016).
  • [25] Smith, J. Marylin, Patil, J. Mayuresh and and Hodges, H. Dewey. “Cfd-based Analysis of Nonlinear Aeroelastic Behavior of High-aspect Ratio Wings”, 19th AIAA Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics Inc., 11-14 June 2001, pp. 1-10. DOI 10.2514/6.2001-1582.
  • [26] Patil, J. Mayuresh and Hodges, H. Dewey. “On the Importance of Aerodynamic and Structural Geometrical Nonlinearities in Aeroelastic Behavior of High-aspect-ratio Wings”, 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, 03-06 April 2000, pp. 905-915. DOI 10.2514/6.2000-1448.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e0d117c-674a-4215-8db5-5404126ffe5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.