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1. Introduction  
 

Discriminant analysis is a multivariate statistical 
method, which can be used for the two main 
purposes. It may serve as a descriptive tool for 
describing differences among groups of units with 
regard to the vector of p random variables 
(descriptive discriminant analysis) or for predicting a 
group membership for a unit that has not been 
classified yet (predictive discriminant analysis). The 
model is built in the latter case, based on a set of 
observations for which the group memberships are 
known, and used to predict the appropriate class of a 
new observation with unknown group membership. 
Both these approaches are involved in the present 
study. 
 
2. Discriminant analysis 
 

The principles of discriminant analysis are 
introduced in [2]-[4]. Suppose that a multivariate 
random sample of the range n falls into H groups. If 
the groups of units can be demonstrated to differ on 
the level of p monitored quantitative variables, X1,..., 
Xp, which could be checked by an analysis of 
variance, the question can be put, to what degree 
these variables affect the unit membership. 
 
2.1. Descriptive discriminant analysis 
 

The basis of Fisher’s concept of discriminant 

analysis is finding a linear combination Y = bTx of p 
monitored variables that would separate H groups 
better than any other such type with the intention that 
its within groups variance would be minimal and 
between groups variance would be maximal. 
Using a notation H for the number of groups, nh for 
the range of the h-th group, n for the total number of 
observations, xih for a vector of the values of 
variables X1,..., Xp on the i-th unit of the h-th group, 
x  for a vector of sample means and  hx for a vector 

of sample means in the h-th group, the following 
formulas are valid: 
- the total variance of the original p variables can be 
represented by the matrix T: 
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- the within groups variance by the matrix E: 
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- the between groups variance by the matrix B: 
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This study examines the risk of morbidity for colorectal surgery undergoing patients. The main aim was to 
identify important risk factors that influence post-operative complications - morbidity, and to create a model to 
predict possible complications for a patient before surgery. The source data file contains information about 
1177 patients who underwent colorectal surgery between 2001 and 2009 at the University Hospital Ostrava, 
Czech Republic. According to the surgeons’ judgment the following seven independent variables were 
included in the analysis: Gender, BMI, American Society of Anaesthesiology (ASA) Classification, Stage of 
Disease, Number of Previous Operations, Surgical Technique and Operation Severity. Discriminant analysis 
was used for the data evaluation; statistical software SPSS 18 and NCSS 2004 were used for the calculations. 
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Thus T = E + B and sum of squares QB(Y) and QE(Y), 
which represent the rate of between and within 
groups variance of a new variable Y, can be 
expressed as: QB(Y) = bTBb    and    QE(Y) = bTEb. 
Minimal within groups variance and maximal 
between groups variance are managed if the ratio 
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known as Fisher’s discriminant criterion, has 
maximal value. Looking for the maximum of (1) the 
system of equations is received with the matrix 
equation 
 

   0)( =−− bIBE 1 λ . 
 
This system has a nontrivial solution provided that 
 

   0=−− IBE 1 λ . (2) 

 
Characteristic equation (2) has r solutions, which are 
the eigenvalues λ1,…, λr of the matrix BE-1 (λ1 >…> 
λr). The eigenvector b1 associated with the largest 
eigenvalue λ1 maximizes discriminant criterion (1). 
Characteristic equation (2) does not determine the 
vector b1 uniquely, it determines only the proportions 
of its components. It is advisable to choose their 
concrete values so that the condition 
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was satisfied. Then criterion (1) could be expressed 
as 
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and the eigenvalue λ1 represents the degree of 
between groups variance of the variable Y1 = b1

Tx. 
The linear combination Y1 = b1

Tx is called the first 
discriminant or also the first canonical variable. If 
the set of units, which is described by p variables, is 
divided into two groups, only one discriminant is 
sufficient for representing the total variance of the 
original variables. 
If the measured values of the variables X1,…, Xp on 
the i-th unit are substituted for x, we obtain the so-
called discriminant score of the unit. Using the 
constant 
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in the calculation ensures that the mean of the 
discriminant scores equals zero. Consequently, for 
the i-th unit, i = 1,…, nh, of the h-th group, h = 1,…, 
H, the first discriminant score is computed as 
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The computation of the vectors of average 
discriminant values in the groups is useful for 
obtaining the view on how the individual groups 
differ with regard to the canonical variable. These 
values are called the group centroids. 
The coefficient b1k indicates the individual impact of 
the k-th original variable Xk on the first canonical 
variable Y1 provided that the other variables are 
constant. These coefficients are often standardized 
due to the better interpretation of results. Denoting F 
the diagonal matrix with the square roots of diagonal 
elements of matrix E the standardized coefficients 
are: 
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The alternative approach to results’ interpretation 
uses correlation coefficients between canonical 
variable and original variables (structure r’s). A large 
absolute values of these coefficients indicate the 
importance of  the original variables for respective 
discriminant. If the correlation coefficient is positive, 
larger values of the original variable lead to 
increasing the canonical variable value and vice 
versa. The vector of correlation coefficients for the 
first discriminant is given by the formula: 
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The significance of the canonical variables in 
discrimination can be tested by the Wilks’statistic 
 
   Λ = | E | / | E+B |,  
 
which has an F distribution in the event that H = 2. 
Otherwise the Bartlett’s approximation can be used, 
where the quantity 
   )ln( Λ−= cV , (7) 
 
with 2/)(1 Hpnc +−−= , has a χ2 distribution 
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with p(H-1) degrees of freedom. 
 
2.2. Predictive discriminant analysis 
 

Suppose that a random sample of n units falls into H 
groups. The p values of quantitative variables X1,..., 
Xp are at disposal for each unit as well as its group 
membership, which is represented by the value of an 
alternative or multivariate nominal variable called 
classifying criterion. 
The goal of predictive discriminant analysis is to set 
up a rule, based on n ×  p data matrix that would 
predict group membership for an arbitrary population 
unit for which the values of the variables X1,..., Xp are 
known. 
Let us assume a two-group classification problem 
where the distribution of the random vector x is a 
multivariate normal with the mean vectors 21 µ,µ  

and the equal covariance matrices ΣΣΣΣ. The eigenvector 
b that maximizes the Fisher’s discriminant criterion 
(1) may be expressed then as: 
 

   b = k ΣΣΣΣ )(1
21 µµ −− , 

 
where k is an arbitrary constant. Provided that 
condition (3) is satisfied this constant has a form 
 

   k = [ )( 21 µµ − T ΣΣΣΣ )(1
21 µµ −− ] 2/1−  

 
and we can easily derive the following classification 
rule: Assign a unit represented by the vector of 
scores x to group 1 if  
 

   xT ΣΣΣΣ )(1
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otherwise to group 2. This rule corresponds to the 
idea of assigning a unit into that group which is the 
nearest in the sense of its distance from the group 
centroids. This classification rule leads to the 
confrontation of the values of the two functions: 
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which are called linear classification functions. 
Using these functions a unit is classified into the 
group with a higher LCF score. Such classification 
minimizes the total proportion of misclassification 
errors. 
The parameter values 21 µ,µ  and ΣΣΣΣ are seldom 
known in practice so their likelihood estimates are 

used in computations. However the total proportion 
of misclassified units is not minimal then. 
 
2.3. Classification efficiency evaluation 
 

The probability of the correct classification of units 
(hit rate) is an important information about the 
quality of used discriminant criterion. It could be 
assessed in several different ways. 
A so-called resubstitution is one of the options, in 
which the discriminant criterion is used for 
classifying the same units as have served for its 
derivation. It is obvious that so gained assessment is 
overestimated. 
Another option is to divide disposable data set into 
two parts. One part is used for discriminant criterion 
derivation, the second one for its verification. So 
gained assessment is unbiased but it requires a 
sufficiently large data set. Moreover the discriminant 
criterion is not as efficient as it could be in the case 
of inclusion all the data in the process of its creation. 
A cross-validated method is also recommended (so 
called “jackknife” procedure), which subsequently 
creates the discriminant criterion using all units of 
the data set except the i-th, i = 1,..., n, which is then 
classified and the accuracy of this classification  is 
checked. The assessment of the probability of the 
correct classification in this method is almost 
unbiased. 
 
3. Study design 
 

The source data set consisted of information about 
1177 patients who underwent colorectal surgery 
between 2001 and 2009 at the University Hospital 
Ostrava, Czech Republic. The main aim of this study 
was to identify important risk factors that influence 
post-operative complications - morbidity, and to 
create a model to predict possible complications for a 
patient before surgery. 
The seven outcome variables were selected on the 
basis of professional judgment of the surgeons: 
Gender, BMI, American Society of Anaesthesiology 
(ASA) Classification, Stage of Disease (SD), 
Number of Previous Operations (NPO), Surgical 
Technique (ST) and Operation Severity (OS). The 
variable Morbidity acts as a grouping variable. 
 
3.1. Data conditioning 
 

Numeric values were assigned to nominal variables 
in this way: Gender (1 – female, 0 – male), Stage of 
Disease (values 1 – 4 were assigned in accordance 
with histological tumour node metastasis (TNM) 
classification for colorectal cancer, value 0 
represents benign disease), Surgical Technique (0 – 
open, 1 – laparoscopy), Operation Severity (values 2, 
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4, 8 were assigned in accordance with methods 
published by Copeland et al. [1]). 
The two grouping-variable values were defined as 0 
– patients without complications and 1 – patients 
with complications. 
The total number of 90 missing values was found in 
the 1177 ×  7 data matrix. All the 90 incomplete 
observations were excluded from the analysis. 
Finally the 1087 ×  7 data matrix was involved in our 
analysis with n1 = 735 units in group 0 and n2 = 352 
units in group 1.  
 
4. Analysis results 
 

The data were analyzed using statistical software 
SPSS Version 18.0 and NCSS 2004. 
Descriptive information for our seven outcome 
variables is given in Table 1. 
 
Table 1. Descriptive statistics 
 

Morbidity Mean Min Max Variance 
ST ,53 0 1 ,250 
Gender ,43 0 1 ,245 
BMI 26,34 13,8 41,6 20,544 

ASA 2,22 1 4 ,571 
NPO ,72 0 6 ,850 
SD 2,21 0 4 2,016 

0 

OS 4,35 2 8 2,730 
ST ,50 0 1 ,251 
Gender ,37 0 1 ,234 
BMI 26,93 16,2 45,7 22,469 
ASA 2,40 1 4 ,542 
NPO ,74 0 5 ,786 
SD 2,05 0 4 2,089 

1 

OS 4,85 2 8 3,805 
ST ,52 0 1 ,250 
Gender ,41 0 1 ,242 
BMI 26,53 13,8 45,7 21,224 
ASA 2,28 1 4 ,568 
NPO ,72 0 6 ,828 
SD 2,16 0 4 2,043 

Total 

OS 4,51 2 8 3,129 

 
We assumed that the joint distribution of each of the 
seven outcome variables is approximately normal in 
each of the two groups. The Box test for covariance 
homogeneity provided no evidence that the 
population covariance matrices differ. The SPSS test 
results are presented in Table 2.  
 
 
 
 
 

Table 2. Box test 
 

Box's M 35,177 
Approx. 1,246 

df1 28 
df2 1795624,033 

F 

Sig. ,173 

 
Because there is support for the equality of the two 
covariance matrices, we proceed with a multivariate 
analysis of variance (MANOVA). The hypothesis of 
equality of group means vectors was rejected at the 
significance level 1% (see Table 3), thus the 
influence of the seven monitored quantities upon 
morbidity was proved. The additional one-way tests 
for individual variables show significant differences 
among group means especially for the variables ASA 
Classification, Operation Severity and BMI. These 
three variables seem to have the greatest impact on 
possible morbidity. Discriminant analysis was used 
to confirm this fact. 
 
Table 3. MANOVA 
 

Term(DF) 
Test Statistic 
A(1): Morbidity 

Test 
Value 

F-
Ratio 

Prob. 
Level (0,05) 

Wilks' Lambda 0,958 6,73 0,000 Reject 

Hotelling-Lawley Tr. 0,044 6,73 0,000 Reject 

Pillai's Trace 0,042 6,73 0,000 Reject 

Roy's Largest Root 0,044 6,73 0,000 Reject 

ST 0,185 0,74 0,390 Accept 

Gender 0,794 3,28 0,070 Accept 

BMI 83,086 3,93 0,048 Reject 

ASA 7,832 13,86 0,000 Reject 

NPO 0,126 0,15 0,697 Accept 

SD 6,283 3,08 0,079 Accept 

OS 57,813 18,78 0,000 Reject 

 
As the classification variable (morbidity) has only 
two values, the data set is divided into two groups 
and only one discriminant is satisfactory to represent 
the total variability of the seven initial variables. Its 
coefficients are shown in Table 4, the constant c 
given by the formula (4) is in the last row of the 
table. 
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Table 4. Canonical Discriminant Function 
Coefficients 
 

 Function 1 
ST -,265 
Gender -,579 
BMI ,034 
ASA ,873 
NPO ,072 
SD -,237 
OS ,379 
(Constant) -3,753 

 
An interpretation of the resulting group differences is 
based on correlation coefficients between each of the 
seven outcome variables and canonical discriminant 
function, which are given by the formula (6). These 
coefficients are reported in Table 5 (Structure 
Matrix). 
 
Table 5. Structure Matrix 
 

 Function 1 
OS ,632 
ASA ,540 
BMI ,289 
Gender -,264 
SD -,256 
ST -,125 
NPO ,057 

 
From the structure r’s we conclude that the variable 
with the greatest impact on morbidity is the variable 
Operation Severity with the coefficient 0.632,  
followed by the variables ASA Classification (0.540) 
and BMI (0.289). Larger values of these variables 
mean a larger value of the canonical variable and 
therefore, the greater risk of morbidity. (The group 
centroids are reported in Table 6). The variable that 
contributes the least to separation of patients with or 
without morbidity is the variable Number of 
Previous Operations (0.057). 
 
Table 6. Group Centroids 
 

Morbidity Function 1 
-,144 0 

1 ,301 

 
The significance of the first canonical variable in 
discrimination was tested by the statistic given by the 
formula (7). The statistical test results reported in 
Table 7 confirmed the importance of this variable (P 
= 0.000). 
 
 
 

Table 7. Wilks' Lambda 
 
Test of Function(s) 
dimension  

Wilks' 
Lambda 

Chi- 
square df P 

                  0 1 ,958 45,927 7 ,000 
 
The second aim of this study was to establish a 
prediction rule for predicting possible complications 
for a patient before surgery. 
Because the Box test did not reject the hypothesis of 
the equality of the two covariance matrices, there is 
support for the use of a linear classification rule.  
The possibility of deleting one or more predictors 
was sought at the beginning and the best results were 
obtained after deleting a variable Number of 
previous operations. Thus only six predictors were 
involved in the further computations: Gender, BMI, 
ASA Classification, Stage of Disease, Surgical 
Technique and Operation Severity. 
The coefficients of the two linear classification 
functions were computed (see Table 8), which can 
serve for predicting morbidity for a patient before 
surgery. Given a set of six predictor scores for a new 
patient, a linear composite score for each group is 
found by multiplying each predictor score by the 
respective weight, summing these six products, and 
adding the constant. Each patient is then assigned to 
that group (with or without morbidity) for which the 
determined score is larger. 
 
Table 8. Classification Function Coefficients 
 

Morbidity 
 

0 1 
ST 2,724 2,597 
Gender 2,725 2,482 
BMI 1,159 1,174 
ASA 2,454 2,844 
SD 1,140 1,031 
OS 1,761 1,929 
(Constant) -25,084 -26,759 

 
The classification efficiency evaluation is given in 
Table 9, often referred to as a confusion matrix. 
The results of resubstitution are shown in the upper 
half of Table 9 (“Original”). We can see that the 
total number of the correctly classified patients is 
643 (440 without and 203 with morbidity), which is 
59.2%.  This number determines the probability of 
the correct classification. However this value is 
overestimated, which was mentioned in Chapter 2.3. 
So the cross-validated method was used to obtain an 
unbiased estimation of the probability of the correct 
classification. Its results are found in the bottom half 
of Table 9 (“Cross-validated”). This method 
provides almost unbiased estimation of our 
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classification model accuracy, which is 58.3% 
((437+197)/1087). 
 
Table 9. Classification Results 
 

Predicted 
Group 

Membership 

 Mor-
bidi-
ty 

0 1 Total 

440 295 735 Count 0 
1 149 203 352 

59,9 40,1 100,0 

Original 

% 0 
1 42,3 57,7 100,0 

437 298 735 Count 0 
1 155 197 352 

59,5 40,5 100,0 

Cross-
validated 

% 0 
1 44,0 56,0 100,0 

 
The risk of morbidity for patients undergoing 
colorectal surgery could be then predicted on the 
basis of the coefficients of the two linear 
classification functions reported in Table 8 with the 
58.3% probability. Regrettably, this number is so 
small that such a model cannot be used in practice. 
Different predictors have to be taken into account in 
future research. 
 
5. Conclusion 
 

Morbidity after colorectal operations depends on 
many factors. This study focused on the risk rate of 
the following seven factors: Gender, BMI, ASA 
Classification, Stage of Disease, Number of Previous 
Operations, Surgical Technique and Operation 
Severity. Discriminant analysis did not find the 
chosen input variables satisfactory enough to make a 
sufficient model for the prediction of morbidity, 
which means that a new choice of independent 
predictors is necessary. This task will be solved in 
the future. 
The variable Operation Severity was marked as the 
variable with the greatest impact on possible 
morbidity, followed by the variables ASA 
Classification and BMI. Larger values of these 
variables mean greater risk of morbidity. 
The other variables do not have such significant 
impact  on morbidity, which is an important finding 
especially in the case of the variable Surgical 
Technique. This fact implies that there is no 
difference in morbidity for the two operation 
methods - laparoscopic and open. 
 
 
 
 

Acknowledgments 
 

This work is supported by The Ministry of 
Education, Youth and Sports of the Czech Republic. 
Project CQR 1M06047. 
 
References 

[1] Copeland, G.P., Jones, D. & Wakters, M. (1991). 
POSSUM: a scoring system for surgical audit. Br. 
J. Surg. 78, 356-360. 

[2] Hebák, P. & Hustopecký, J. & Jarošová, E. & 
Pecáková, I. (2004). Vícerozměrné statistické 
metody [1] (Multivariate statistical methods [1]). 
Praha: Informatorium. 

[3] Huberty, C.J. & Olejnik, S. (2006). Applied 
MANOVA and Discriminant Analysis. Wiley-
Interscience. 

[4] Neil, H.T. (2002). Applied Multivariate Analysis. 
Springer-Verlag, New York, USA. 

 
 


