PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Properties of HTPE/Bu-NENA Binder and the Kinetics of Bu-NENA Evaporation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The correlation between the mechanical properties of hydroxyl-terminated polyether (HTPE)/N-butyl-N-(2-nitroxyethyl)nitramine (Bu-NENA) binders with different plasticization ratios (pl/po), varied from 0.9 to 1.5, have been studied. The very early stage of evaporation of Bu-NENA from the HTPE/Bu-NENA binder, with a pl/po ratio of 1.2, has been investigated. The results revealed that the pl/po ratio has strong influences on the mechanical properties. When the pl/po ratio was 1.2, the mechanical properties of the HTPE/Bu-NENA binder were satisfactory, the maximum tensile strength and the elongation at break being 2.39 MPa and 93.27%, respectively. The evaporation rate constant of Bu-NENA from HTPE/Bu-NENA binder with a pl/po ratio of 1.2 increased from 0.31·10–5 to 2.32·10–5 s–1 as the temperature was increased from 50 to 90 °C. The value of the activation energy of evaporation was 51.47 kJ/mol and its pre-exponential factor was 6.14·102 s–1.
Rocznik
Strony
119--141
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Key Laboratory for Ministry of Education of High Energy Density Materials, Beijing Institute of Technology, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Key Laboratory for Ministry of Education of High Energy Density Materials, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • [1] Tan, H.M. The Chemistry and Technology of Solid Rocket Propellant. 1st ed, Beijing Institute of Technology Press, Beijing, 2015, pp. 186; ISBN 978-7-56-409714-1.
  • [2] Duncan, E.S.; Margetson, J. A Nonlinear Viscoelastic Theory for Solid Rocket Propellants Based on a Cumulative Damage Approach. Propellants, Explos., Pyrotech. 1998, 23(2): 94-104.
  • [3] Li, G.C.; Wang, Y.F.; Jiang, A.M.; Yang, M.; Li, J.F. Micromechanical Investigation of Debonding Processes in Composite Solid Propellants. Propellants, Explos., Pyrotech. 2018, 43(5): 642-649.
  • [4] Zhang, L.; Zhi, S.J.; Shen, Z.B. Research on Tensile Mechanical Properties and Damage Mechanism of Composite Solid Propellants. Propellants, Explos., Pyrotech. 2018, 43(3): 234-240.
  • [5] Kohga, M. Mechanical Characteristics and Thermal Decomposition Behavior of Polytetrahydrofuran Binder Using Glycerol Propoxylate (Mn = 260) as Crosslinking Agent. Propellants, Explos., Pyrotech 2017, 38(3): 366-371.
  • [6] Liu, J.R.; Song, X.J.; Yang, Y. Study on the Adjustment Method of NEPE Propellant Binder Matrix Structure. J. Solid Rocket Technol. 2010, 33(1): 72-76.
  • [7] Mao, K.Z.; Luo, Y.J.; Xia, M. Effect of Polyethylene Glycol on Curing Kinetic and Mechanical Properties of Polyether of Ethylene Oxide and Tetrahydrofuren/Polyfunctional Isocyanate N-100 Binder System. (in Chinese) Polym. Mater. Sci. Eng. (Chengdu, China) 2013, 29(10): 34-37.
  • [8] Mao, K.Z.; Ma, S.; Luo, Y.J. Crosslinking Network Structure Integrity of PET/N-100 Binder System. Chin. J. Energ. Mater. 2015, 23(10): 941-946.
  • [9] Ma, S.; Li, Y.J.; Li, G.P.; Luo, Y.J. Research on the Mechanical Properties and Curing Networks of Energetic GAP/TDI Binders. Cent. Eur. J. Energ. Mater. 2017, 14(3): 708-725.
  • [10] Zhang, W.B.; Fang, X.D.; Zhu, X.Z.; Fan, W.W. Synthesis and Mechanical Properties of Poly(tetrahydrofuran)-poly(butadiene)-poly(tetrahydrofuran) Triblock Copolymer. J. Solid Rocket Technol. 2015, 2(5): 251-255.
  • [11] Wang, C.D.; Luo, Y.J.; Xia, M. Synthesis of HTPE and Properties of HTPE Elastomers. Chin. J. Energ. Mater. 2011, 19(5): 518-522.
  • [12] Kai, F.; Tokerud, D.; Biserod, H.; Orbekk, E.; Tenden, S.; Kaiserman, M.; Rodack, M.; Spate, W.; Winetrobe, S.; Royce, B.; Wallace, S. The Hypervelocity Anti-Tank Missile Development Program; Rocket Motor Design and Development. AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 41st, Tucson, AZ, USA, 2005, 4172.
  • [13] Kaiserman, M.; Rodack, M.; Spate, W.; Winetrobe, S.; Royce, B.; Wallace, S.; Biserod, H.; Fossumstuen, K.; Tokerud, D. An Overview of the Hypervelocity Anti-Tank Missile (HATM) Development Program. AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 41st, Tucson, AZ, USA, 2005, 4171.
  • [14] Fletcher, W.G.; Comfort, T.S. Updates on HTPE Propellants Service Life. Insensitive Munitions Energ. Mater. Technol. Symp., Bristol, UK, 2006, 9.
  • [15] Yan, D.Q.; Xu, D.D.; Shi, J.G. A Review of Solid Propellant Binder HTPE Development and Its Molecular Design Philosophy. J. Solid Rocket Technol. 2009, 32(6): 644-649.
  • [16] Shi, X.B.; Pang, W.Q.; Wei, H.J. Research Progress and Development Trends of Insensitive Propellant. Chem. Propellants Polym. Mater. 2007, 5(2): 24-28.
  • [17] Wang, W.X.; Xue, J.Q.; He, W.G.; Zhou, J.Y.; Yu, H.C.; Shang, B.K. Performance and Application of Bu-NENA Energetic Plasticizer. Chem. Propellants Polym. Mater. 2014, 12(1): 1-22.
  • [18] Damse, R.S. Evaluation of Energetic Plasticizers for Solid Gun Propellant. Def. Sci. J. 2008, 58(1): 86-93.
  • [19] Cartwright, R.V. Volatility of NENA and Other Energetic Plasticizers Determined by Thermogravimetric Analysis. Propellants, Explos., Pyrotech. 2010, 20(2): 51-57.
  • [20] Tompa, A.S. Thermal Analysis of Liquid and Solid Propellants. J. Hazard. Mater. 1980, 4(1): 95-112.
  • [21] Zhao, B.B.; Zhang, T.F.; Wang, Z.; Sun, S.X.; Ge, Z.; Luo, Y.J. Kinetics of Bu-NENA Evaporation from Bu-NENA/NC Propellant Determined by Isothermal Thermogravimetry. Propellants, Explos., Pyrotech. 2017, 42(3): 253-259.
  • [22] Yilgor, I.; Yilgor, E.; Guler, I.G.; Ward, T.C.; Wilkes, G.L. FTIR Investigation of the Influence of Diisocyanate Symmetry on the Morphology Development in Model Segmented Polyurethanes. Polymer 2006, 47(11): 4105-4114.
  • [23] Fried, E. An Elementary Molecular-Statistical Basis for the Mooney and Rivlin-Saunders Theories of Rubber Elasticity. J. Mech. Phys. Solids 2002, 50(3): 571-582.
  • [24] Kramer, O. Contribution of Entanglements to Rubber Elasticity. Polymer 1979, 20(11), 1336-1342.
  • [25] Šesták, J. Study of the Kinetics of the Mechanism of Solid-State Reactions at Increasing Temperatures. Thermochim. Acta 1971, 3(1): 1-12.
  • [26] Sućeska, M.; Mušanić, S. M.; Houra, I.F. Kinetics and Enthalpy of Nitroglycerine Evaporation from Double Base Propellants by Isothermal Thermogravimetry. Thermochim. Acta 2010, 510(1): 9-16.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e077181-1d74-47e7-b89f-be681b6bfb5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.