PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dynamic tensile behaviour under impact loading for rocks damaged by static precompression

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In geotechnical engineering projects, rock masses are subjected to various degrees of disturbance from geotectonic movements, rock drilling and mining before they are subjected to dynamic loads such as rock bursts, earthquakes, and blasting. We aim to investigate the dynamic mechanical properties, strain field, energy evolution, and progressive cracking of damaged sandstone under impact loading. In this study, sandstone specimens undergo various damage degrees caused by precompression and are characterized by computed tomography (CT) imaging. Then, the damaged specimens are subjected to impact tensile loads by employing a split Hopkinson pressure bar (SHPB) coupled with a high-speed camera and digital image correlation (DIC). The experimental results show that the energy dissipation density ratio, scale of the initial central crack, strain, and level of rock fragmentation in the vicinity of the bar-sample interfaces all increase with increasing driving pressure or sandstone damage degree. In contrast, the regular pattern of dynamic tensile strength is the opposite. We also find that the total strength rises before the prestress ratio of 0.2 and subsequently decreases as the sandstone’s damage degree increases. The rock’s dynamic tensile strength reduction ratio grows with the Weibull distribution as the damage degree expands. In addition, the function of the growth rate of the dissipated energy density ratio concerning the sandstone’s damage factor follows the Weibull distribution. These findings are of great significance to studying the mechanical responses of damaged rock and risk mitigation under dynamic catastrophes such as rock bursts, earthquakes, and blasting in rock engineering projects.
Rocznik
Strony
art. no. e199, 2023
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Mengcheng National Geophysical Observatory, University of Science and Technology of China, Mengcheng 233500, Anhui, China
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, Anhui, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, Anhui, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, Anhui, China
autor
  • Beijing CAS-Mechanics Blasting Co., Ltd, Beijing 101318, China
  • Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Mengcheng National Geophysical Observatory, University of Science and Technology of China, Mengcheng 233500, Anhui, China
Bibliografia
  • 1. Dai F, Xia K, Zuo JP, Zhang R, Xu NW. Static and dynamic flexural strength anisotropy of Barre granite. Rock Mech Rock Eng. 2013;46:1589–602. https://doi.org/10.1007/s00603-013-0390-y.
  • 2. Guo H, McGuire JJ, Zhang H. Correlation of porosity variations and rheological transitions on the southern Cascadia megathrust. Nat Geosci. 2021;14(05):341–8. https:// doi. org/ 10. 1038/ s41561-021-00740-1.
  • 3. Karliński J, Ptak M, Działak P, Rusiński E. The approach to min- ing safety improvement: accident analysis of an underground machine operator. Arch Civ Mech Eng. 2016;16(3):503–12. https://doi.org/10.1016/j.acme.2016.02.010.
  • 4. Booth AM, Dehls J, Eiken T, Fischer L, Hermanns RL, Oppikofer T. Integrating diverse geologic and geodetic observations to determine failure mechanisms and deformation rates across a large bedrock landslide complex: the Osmundneset landslide, Sogn og Fjordane, Norway. Landslides. 2015;12(4):745–56. https://doi. org/10.1007/s10346-014-0504-y.
  • 5. Fan L, Li H, Xi Y. Evaluation of the effects of three different cooling methods on the dynamic mechanical properties of thermal-treated sandstone. Bull Eng Geol Environ. 2022;81:154. https:// doi.org/10.1007/s10064-022-02630-1.
  • 6. Zhang R, Xie HP, Ren L, Deng JH, Gao MZ, Feng G, Zhang ZT, Li XP, Tan Q. Excavation-induced structural deterioration of rock masses at different depths. Arch Civ Mech Eng. 2022;22:81. https://doi.org/10.1007/s43452-022-00401-z.
  • 7. Li X, Gao W, Guo L, Li Z, Zhang S. Influences of the number of non-consecutive joints on the dynamic mechanical properties and failure characteristics of a rock-like material. Eng Fail Anal. 2023;146:107101. https:// doi. org/ 10. 1016/j. engfa ilanal. 2023. 107101.
  • 8. As’habi F, Lakirouhani A. Numerical modeling of jointed rock samples under unconfined and confined conditions to study peak strength and failure mode. Arab J Geosci. 2021;14:174. https:// doi.org/10.1007/s12517-021-06569-7.
  • 9. Cai X, Cheng C, Zhao Y, Zhou Z, Wang S. The role of water content in rate dependence of tensile strength of a fine-grained sandstone. Arch Civ Mech Eng. 2022;22:58. https://doi.org/10. 1007/s43452-022-00379-8.
  • 10. Sassia S, Tarfaoui M, Yahia HB. In-situ heat dissipation monitoring in adhesively bonded composite joints under dynamic compression loading using SHPB. Compos Part B Eng. 2018;154:64– 76. https://doi.org/10.1016/j.compositesb.2018.07.039.
  • 11. Li D, Han Z, Sun X, Zhou T, Li X. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests. Rock Mech Rock Eng. 2019;52:1623–43. https://doi.org/10.1007/s00603-018-1652-5.
  • 12. Xia K, Yao W, Wu B. Dynamic rock tensile strengths of Laurentian granite: experimental observation and micromechanical model. J Rock Mech Geotech Eng. 2017;9(01):116–24. https:// doi.org/10.1016/j.jrmge.2016.08.007.
  • 13. Zheng QQ, Xu Y, Hu H, Qian JW, Ma Y, Gao X. Quantitative damage, fracture mechanism and velocity structure tomography of sandstone under uniaxial load based on acoustic emission moni- toring technology. Constr Build Mater. 2021;272:121911. https:// doi.org/10.1016/j.conbuildmat.2020.121911.
  • 14. Mishra S, Khetwal A, Chakraborty T, Basu D. Effect of loading characteristics and specimen size in split Hopkinson pressure bar test on high-rate behavior of phyllite. Arch Civ Mech Eng. 2022;22:212. https://doi.org/10.1007/s43452-022-00534-1.
  • 15. Pei P, Dai F, Liu Y, Wei M. Dynamic tensile behavior of rocks under static pre-tension using the flattened Brazilian disc method. Int J Rock Mech Min Sci. 2020;126:104208. https://doi.org/10. 1016/j.ijrmms.2019.104208.
  • 16. Hao X, Du W, Zhao Y, Sun Z, Zhang Q, Wang S, Qiao H. Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading. Int J Min Sci Technol. 2020;30(05):659–68. https://doi.org/10.1016/j.ijmst.2020.06.007.
  • 17. Zhang QB, Zhao J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng. 2014;47:1411–78. https:// doi. org/ 10. 1007/ s00603-013-0463-y.
  • 18. Gong F, Wu W, Zhang L. Brazilian disc test study on tensile strength-weakening effect of high pre-loaded red sandstone under dynamic disturbance. J Cent South Univ. 2020;27:2899–913. https://doi.org/10.1007/s11771-020-4517-5.
  • 19. Yin T, Bai L, Li X, Li X, Zhang S. Effect of thermal treatment on the mode I fracture toughness of granite under dynamic and static coupling load. Eng Fract Mech. 2018;199:143–58. https://doi.org/ 10.1016/j.engfracmech.2018.05.035.
  • 20. Ciotoli G, Procesi M, Etiope G, Fracassi U, Ventura G. Influence of tectonics on global scale distribution of geological methane emissions. Nat Commun. 2020;11:2305. https://doi.org/10.1038/ s41467-020-16229-1.
  • 21. Li X, Li B, Li X, Yin T, Wang Y, Dang W. Thermal shock effects on the mechanical behavior of granite exposed to dynamic loading. Arch Civ Mech Eng. 2020;20:66. https://doi.org/10.1007/ s43452-020-00070-w.
  • 22. Zhang Z, Li Y, Wang S, Zhang H, Qian Y. Assessing and controlling of boulder deep-hole blasting-induced vibrations to mini-mize impacts to a neighboring metro shaft. Arch Civ Mech Eng. 2021;21:66. https://doi.org/10.1007/s43452-021-00220-8.
  • 23. Yan Z, Dai F, Liu Y, Li Y, You W. Experimental investigation of pre-flawed rocks under combined static-dynamic loading: mechanical responses and fracturing characteristics. Int J Mech Sci. 2021;211:106755. https://doi.org/10.1016/j.ijmecsci.2021. 106755.
  • 24. Shangguan Z, Zhu Z, Tang W. Dynamic impact experiment and numerical simulation of frozen soil with prefabricated holes. J Eng Mech. 2020;146(8):04020085. https:// doi. org/ 10. 1061/ (ASCE)EM.1943-7889.0001821.
  • 25. Wu B, Chen R, Xia K. Dynamic tensile failure of rocks under static pretension. Int J Rock Mech Min Sci. 2015;80:12–8. https:// doi.org/10.1016/j.ijrmms.2015.09.003.
  • 26. Mihalić AS, Sečanj M, Bernat GS, KrkačM BH, Džindo A, Zekan S, Željko A. Landslides in the Dinarides and Pannonian Basin—from the largest historical and recent landslides in Croatia to catastrophic landslides caused by Cyclone Tamara (2014) in Bosnia and Herzegovina. Landslides. 2017;14:1861–76. https://doi.org/ 10.1007/s10346-017-0880-1.
  • 27. Erarslan N. Experimental and numerical investigation of plastic fatigue strain localization in brittle materials: an application of cyclic loading and fatigue on mechanical tunnel boring technologies. Int J Fatigue. 2021;152:106442. https://doi.org/10.1016/j. ijfatigue.2021.106442.
  • 28. Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci. 2012;49:105–12. https://doi.org/10.1016/j. ijrmms.2011.10.004.
  • 29. Zhang X, Lin H, Wang Y, Zhao Y. Creep damage model of rock mass under multi-level creep load based on spatio-temporal evolution of deformation modulus. Arch Civ Mech Eng. 2021;21:71. https://doi.org/10.1007/s43452-021-00224-4.
  • 30. Li XB. Rock dynamics fundamentals and applications. Beijing: Science Press; 2014.
  • 31. Zhu JB, Zhai TQ, Liao ZY, Yang SQ, Liu XL, Zhou T. Low-amplitude wave propagation and attenuation through damaged rock and a classification scheme for rock fracturing degree. Rock Mech Rock Eng. 2020;53:3983–4000. https://doi.org/10.1007/ s00603-020-02162-8.
  • 32. Zhang R, Ai T, Ren L, Li G. Failure characterization of three typical coal-bearing formation rocks using acoustic emission monitoring and X-ray computed tomography techniques. Rock Mech Rock Eng. 2019;52:1945–58. https:// doi. org/ 10. 1007/ s00603-018-1677-9.
  • 33. Li D, Wong LNY. The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng. 2013;46:269–87. https://doi.org/10.1007/s00603-012-0257-7.
  • 34. Rahman T, Sarkar K. Correlations between uniaxial compressive strengthand dynamic elastic properties for six rock types. Int J Geomech. 2023;23(6):040230. https://doi.org/10.1061/IJGNAI. GMENG-7854.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e0335b6-e2de-4933-a087-d2abd3858e83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.