PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of grippers for laparoscopic surgery and optimization of experimental parameters for maximum tissue weight holding capacity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grippers are routinely used to hold, lift and move organs in laparoscopic operations. They are generally toothed to prevent organs from slipping during retention. Organs held by grippers are always at risk of being damaged by the clamping force. In this study, noncontact grippers working with the Bernoulli principle and using air pressure were developed, and vacuum performance was compared in terms of maximum tissue weight holding capacity. For this purpose, Taguchi method was employed for experimental design and optimization, and Taguchi L16 orthogonal array was selected for experimental design. The experimental parameters were 4 gripper types, 4 air-pressure levels (3.5, 4.5, 5, and 5.5 bar), 4 flow rates (2.2, 2.6, 2.8 and 3 m3/h) and two animal tissue types (ventriculus/gizzard and skin). Values from the experimental procedures were evaluated using signal-to-noise ratio, analysis of variance and three-dimension graphs. An equation was obtained by using 3rd-order polynomial regression model for weight values. Optimization reliability was tested by validation tests and the revealed test results were within the estimated confidence interval. The results obtained from this study are important for future studies in terms of organ injury prevention due to traditional grippers in laparoscopic surgery.
Rocznik
Strony
1125--1132
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Düzce University, Institute of Science, Mechanical Engineering, Beci Yorukler, Düzce, Turkey
autor
  • Düzce University, Engineering Faculty, Department of Mechatronics, Beci Yorukler, Düzce, Turkey
Bibliografia
  • [1] J. Dankelman, C.A. Grimbergen, and H.G. Stassen, Engineering for patient safety: Issues in minimally invasive procedures, Lawrence Erlbaum Associates, New Jersey, London, 2005.
  • [2] M. Trommelen, “Development of a medical bernoulli gripper,” M.S. thesis, Department of Biomedical Engineering, Delft Univ. of Technol., Delft, Netherlands, 2010.
  • [3] B.T. Bethea, A.M. Okamura, M. Kitagawa, T.P. Fitton, S.M. Cattaneo, V.L. Gott, W.A. Baumgartner, and D.D. Yuh, “Application of haptic feedback to robotic surgery”, J. Laparoendosc. Adv. Surg. Tech. 14(3), 191–195 (2004), DOI: 10.1089/1092642041255441.
  • [4] M.G. Munro, “Laparoscopic access: Complications, technologies, and techniques”, Curr. Opin. Obstet. Gynecol. 14(4), 365–374 (2002).
  • [5] G. Tholey, J.P. Desai, and A.E. Castellanos, “Force feedback plays a significant role in minimally invasive surgery: Results and analysis”, Ann. Surg. 241(1), 102 (2005), DOI: 10.1097/01.sla.0000149301.60553.1e.
  • [6] F. Erzincanli, J.M. Sharp, and A.M. Dore, “Grippers for handling of non-rigid food products”, in Proceedings ofEuriscon’94, Mal-aga, Spain, 1994, pp. 798–806.
  • [7] B. Ozcelik and F. Erzincanli, “A non-contact end-effector for the handling of garments”, Robotica 20(4), 447–450 (2002), DOI: 10.1017/S0263574702004125.
  • [8] B. Ozcelik and F. Erzincanli, “Examination of the movement of a woven fabric in the horizontal direction using a non-contact end-effector”, Int. J. Adv. Manuf. Technol. 25(5‒6), 527–532 (2005), DOI: 10.1007/s00170‒004‒2075–x.
  • [9] S. Davis, J.O. Gray, and D.G. Caldwell, “An end effector based on the Bernoulli principle for handling sliced fruit and vegetables”, Robot. Comput. Integr. Manuf. 24(2), 249–257 (2008), DOI: 10.1016/j.rcim.2006.11.002.
  • [10] R. Sam and N. Buniyamin, “A bernoulli principle based flex-ible handling device for automation of food manufacturing processes”, in Proceedings ofICCAIS, Saigon, Vietnam, 2012, pp. 214–219: IEEE, DOI: 10.1109/ICCAIS.2012.6466590.
  • [11] G. Dini, G. Fantoni, and F. Failli, “Grasping leather plies by Bernoulli grippers”, CIRP Ann. 58(1), 21–24 (2009), DOI: 10.1016/j.cirp.2009.03.076.
  • [12] Y. Liu, C. Liu, W. Liu, Y. Ma, S. Tang, C. Liang, Q. Cai, and C. Zhang, “Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method”, Opt. Laser Technol. 111, 470–480 (2019), DOI: 10.1016/j.optlastec.2018.10.030.
  • [13] P.M. Nia, H.S. Jenatabadi, P.M. Woi, E. Abouzari-Lotf, and Y. Alias, “The optimization of effective parameters for electro-deposition of reduced graphene oxide through Taguchi method to evaluate the charge transfer”, Measurement 137, 683–690 (2019), DOI: 10.1016/j.measurement.2019.02.015.
  • [14] Y. Li and L. Zhu, “Optimization of user experience in mobile application design by using a fuzzy analytic-network-process-based Taguchi method”, Appl. Soft Comput. 79, 268–282 (2019), DOI: 10.1016/j.asoc.2019.03.048.
  • [15] S. Akyalcin, L. Akyalcin, and M. Bjørgen, “Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method”, Microporous Mesoporous Mater. 273 256–264 (2019), DOI: 10.1016/j.micromeso.2018.07.014.
  • [16] R. Zhang and X. Wang, “Parameter study and optimization of a half-vehicle suspension system model integrated with an arm-teeth regenerative shock absorber using Taguchi method”, Mech. Syst. Signal Process. 126 65–81 (2019), DOI: 10.1016/j.ymssp.2019.02.020.
  • [17] N.P. Kim, D. Cho, and M. Zielewski, “Optimization of 3D printing parameters of Screw Type Extrusion (STE) for ceramics using the Taguchi method”, Ceram. Int. 45(2), 2351–2360 (2019), DOI: 10.1016/j.ceramint.2018.10.152.
  • [18] J. Baby and K. Shunmugesh, “Optimization of Glass Fiber Rein-forced Polymer (GFRP) using Multi Objective Taguchi function and TOPSIS”, Mater. Today Proc. 11, 952–960 (2019), DOI: 10.1016/j.matpr.2018.12.024.
  • [19] A.B. Naik and A.C. Reddy, “Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA)”, Therm. Sci. Eng. Prog. 8, 327–339 (2018), DOI: 10.1016/j.tsep.2018.08.005.
  • [20] S.K. Khare, S. Agarwal, and S. Srivastava, “Analysis of sur-face roughness during turning operation by Taguchi Method”, Mater. Today Proc. 5 (14), 28089–28097 (2018), DOI: 10.1016/j.matpr.2018.10.050.
  • [21] L. Ai, G. Zhang, W. Li, G. Liu, and Q. Liu, “Optimization of radial-type superconducting magnetic bearing using the Taguchi method”, Physica C Supercond. Appl. 550, 57–64 (2018), DOI: 10.1016/j.physc.2018.03.013.
  • [22] Z. Nawrat, “Robin heart progress-advances material and technology in surgical robots”, Bull. Pol. Ac.: Tech. 58(2), 323‒327 (2010), DOI: 10.2478/v10175‒010‒0030‒6
  • [23] C. Zielinski and T. Winiarski, “General specification of multi-robot control system structures”, Bull. Pol. Ac.: Tech., 58(1), 15‒28 (2010), DOI: 10.2478/v10175‒010‒0002-x
  • [24] G. Samtaş and S. Korucu, “The optimization of cutting parameters using Taguchi Method in milling of tempered aluminum 5754 alloy”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7(1), 45–60 (2019), [in Turkish], DOI: 10.29130/dubited.423795.
  • [25] G. Samtaş and S. Korucu, “Optimization of cutting parameters for surface roughness in milling of cryogenic treated EN AW 5754 (AlMg3) aluminum alloy”, Politeknik Dergisi 22(3), 665–673 (2019), [in Turkish], DOI: 10.2339/politeknik.457957.
  • [26] F. Kara, “Optimization of surface roughness in finish milling of AISI P20+S plastic-mold steel”, Mater. Technol. 52(2), 195–200 (2018), DOI: 10.17222/mit.2017.088.
  • [27] M.H. Cetin, B. Ozcelik, E. Kuram, and E. Demirbas, “Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method”, Journal of Cleaner Production 19(17‒18), 2049‒2056 (2011), DOI: 10.1016/j.jclepro.2011.07.013
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e017190-0889-47f9-8b99-aaa0a0e94e71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.