Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The inventory systems are highly variable and uncertain due to market demand instability, increased environmental impact, and perishability processes. The reduction of waste and minimization of holding and shortage costs are the main topics studied within the inventory management area. The main difficulty is the variability of perishability and other processes that occurred in inventory systems and the solution for a trade-off between sufficient inventory level and waste of products. In this paper, the approach for resolving this trade-off is proposed. The presented approach assumes the application of a state-feedback neural network controller to generate the optimal quantity of orders considering an uncertain deterioration process and the FIFO issuing policy. The development of the control system is based on state-space close loop control along with neural networks. For modelling the perishability process Weibull distribution and FIFO policy are applied. For the optimization of the designed control system, the evolutionary NSGA-II algorithm is used. The robustness of the proposed approach is provided using the minimax decision rule. The worst-case scenario of an uncertain perishability process is considered. For assessing the proposed approach, simulation research is conducted for different variants of controller structure and model parameters. We perform extensive numerical simulations in which the assessment process of obtained solutions is conducted using hyper volume indicator and average absolute deviation between results obtained for the learning and testing set. The results indicate that the proposed approach can significantly improve the performance of the perishable inventory system and provides robustness for the uncertain changes in the perishability process.
Rocznik
Tom
Strony
art. no. e141182
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- Faculty of Electrical Engineering, Department of Automation and Robotics, West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland
autor
- Faculty of Electrical Engineering, Department of Automation and Robotics, West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland
Bibliografia
- [1] Y. Yang, H. Chi, W. Zhou, T. Fan, and S. Piramuthu, “Deterioration control decision support for perishable inventory management,” Decis. Support Syst., vol. 134, p. 113308, Jul. 2020, doi: 10.1016/j.dss.2020.113308.
- [2] X. Cai, J. Chen, Y. Xiao, and X. Xu, “Optimization and Coordination of Fresh Product Supply Chains with Freshness-Keeping Effort,” Prod. Oper. Manag., vol. 19, no. 3, pp. 261–278, Nov. 2009, doi: 10.1111/j.1937-5956.2009.01096.x.
- [3] M. de Keizer, R. Akkerman, M. Grunow, J.M. Bloemhof, R. Haijema, and J.G.A.J. van der Vorst, “Logistics network design for perishable products with heterogeneous quality decay,” Eur. J. Oper. Res., vol. 262, no. 2, pp. 535–549, Oct. 2017, doi: 10.1016/j.ejor.2017.03.049.
- [4] I. Bose, A.K.H. Lui, and E.W. T. Ngai, “The impact of rfid adoption on the market value of firms: An empirical analysis,” J. Organ. Comput. Electron. Commer., vol. 21, no. 4, pp. 268–294, Oct. 2011, doi: 10.1080/10919392.2011.614184.
- [5] Y.J. Tu, W. Zhou, and S. Piramuthu, “A novel means to address RFID tag/item separation in supply chains,” Decis. Support Syst., vol. 115, pp. 13–23, Nov. 2018, doi: 10.1016/j.dss.2018.09.003.
- [6] M. Thibaud, H. Chi, W. Zhou, and S. Piramuthu, “Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review,” Decis. Support Syst., vol. 108, pp. 79–95, Apr. 2018, doi: 10.1016/j.dss.2018.02.005.
- [7] G. Kovács, “Novel supply chain concepts and optimization of virtual enterprises to reduce cost, increase productivity and boost competitiveness,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 973–980, 2018, doi: 10.24425/bpas.2018.125945.
- [8] M. Najafi, A. Ahmadi, and H. Zolfagharinia, “Blood inventory management in hospitals: Considering supply and demand uncertainty and blood transshipment possibility,” Oper. Res. Heal. Care, vol. 15, pp. 43–56, Dec. 2017, doi: 10.1016/j.orhc.2017.08.006.
- [9] D. H. Nguyen and H. Chen, “An effective approach for optimization of a perishable inventory system with uncertainty in both demand and supply,” Int. Trans. Oper. Res., vol. 29, no. 4, pp. 2682–2704, Jul. 2022, doi: 10.1111/itor.12846.
- [10] A. Dziomdziora and P. Ignaciuk, “Bullwhip Effect – Logistic Stability Examination in Serial and Arborescent Topologies with Demand Uncertainty and Delay,” Syst. THEORY, Control Comput. J., vol. 1, no. 1, pp. 68–80, Jun. 2021, doi: 10.52846/stccj.2021.1.1.13.
- [11] S. Rajendran and S. Srinivas, “Hybrid ordering policies for platelet inventory management under demand uncertainty,” IISE Trans. Healthc. Syst. Eng., vol. 10, no. 2, pp. 113–126, Apr. 2020, doi: 10.1080/24725579.2019.1686718.
- [12] P. H. Hsu, H. M. Wee, and H. M. Teng, “Optimal ordering decision for deteriorating items with expiration date and uncertain lead time,” Comput. Ind. Eng., vol. 52, no. 4, pp. 448–458, May 2007, doi: 10.1016/j.cie.2007.02.002.
- [13] P. Nielsen, Z. Michna, B. B. Sřrensen, and N. D. A. Dung, “Lead Times – Their Behavior and the Impact on Planning and Control in Supply Chains,” Manag. Prod. Eng. Rev., vol. 8, no. 2, pp. 30–40, Jun. 2017, doi: 10.1515/mper-2017-0015.
- [14] A. Diabat, E. Dehghani, and A. Jabbarzadeh, “Incorporating location and inventory decisions into a supply chain design problem with uncertain demands and lead times,” J. Manuf. Syst., vol. 43, pp. 139–149, Apr. 2017, doi: 10.1016/j.jmsy.2017.02.010.
- [15] S. A. Darestani and M. Hemmati, “Robust optimization of a bi-objective closed-loop supply chain network for perishable goods considering queue system,” Comput. Ind. Eng., vol. 136, pp. 277–292, Oct. 2019, doi: 10.1016/j.cie.2019.07.018.
- [16] J. Jouzdani and K. Govindan, “On the sustainable perishable food supply chain network design: A dairy products case to achieve sustainable development goals,” J. Clean. Prod., vol. 278, p. 123060, Jan. 2021, doi: 10.1016/j.jclepro.2020.123060.
- [17] P. Ignaciuk and A. Bartoszewicz, “Dead-beat and reaching-lawbased sliding-mode control of perishable inventory systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, no. 1, pp. 39–49, Mar. 2011, doi: 10.2478/v10175-011-0007-0.
- [18] A. Bartoszewicz and M. Maciejewski, “Sliding mode control of periodic review perishable inventories with multiple suppliers and transportation losses,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 4. pp. 885–892, 2013, doi: 10.2478/bpasts-2013-0095.
- [19] P. Ignaciuk and A. Bartoszewicz, “Dead-time compensation in continuous-review perishable inventory systems with a remote supply source,” Arch. Control Sci., vol. 21, no. 1. pp. 61–84, 2011, doi: 10.2478/v10170-010-0032-5.
- [20] R. Taparia, S. Janardhanan, and R. Gupta, “Inventory control for nonperishable and perishable goods based on model predictive control,” Int. J. Syst. Sci. Oper. Logist., vol. 7, no. 4, pp. 361–373, Oct. 2020, doi: 10.1080/23302674.2019.1600766.
- [21] P. Ignaciuk and A. Bartoszewicz, “Linear-quadratic optimal control of periodic-review perishable inventory systems,” IEEE Trans. Control Syst. Technol., vol. 20, no. 5, pp. 1400-1407, Sept. 2012, doi: 10.1109/TCST.2011.2161086.
- [22] A. Osvald and L.Z. Stirn, “A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food,” J. Food Eng., vol. 85, no. 2, pp. 285–295, Mar. 2008, doi: 10.1016/j.jfoodeng.2007.07.008.
- [23] S.S. Sanni and W.I.E. Chukwu, “An Economic order quantity model for Items with Three-parameter Weibull distribution Deterioration, Ramp-type Demand and Shortages,” Appl. Math. Model., vol. 37, no. 23, pp. 9698–9706, Dec. 2013, doi: 10.1016/J.APM.2013.05.017.
- [24] E. Chołodowicz and P. Orłowski, “Development of new hybrid discrete-time perishable inventory model based on Weibull distribution with time-varying demand using system dynamics approach,” Comput. Ind. Eng., vol. 154, p. 107151, Apr. 2021, doi: 10.1016/j.cie.2021.107151.
- [25] A. Parnianifard, A. Zemouche, M. Imran, and L.Wuttisittikulkij, “Robust simulation-optimization of dynamic-stochastic production/inventory control system under uncertainty using computational intelligence,” Uncertain. Supply Chain Manag., vol. 8, no. 4, pp. 633–648, 2020.
- [26] P. Leśniewski and A. Bartoszewicz., “Optimal model reference sliding mode control of perishable inventory systems,” IEEE Trans. Autom. Sci. Eng., vol. 17, no. 3, pp. 1647–1656, 2020.
- [27] R. Qiu, M. Sun, and Y.F. Lim, “Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches,” Eur. J. Oper. Res., vol. 261, no. 3, pp. 880–892, Sep. 2017, doi: 10.1016/j.ejor.2017.02.027.
- [28] C.S. Tsou, “Evolutionary Pareto optimizers for continuous review stochastic inventory systems,” Eur. J. Oper. Res., vol. 195, no. 2, pp. 364–371, Jun. 2009, doi: 10.1016/j.ejor.2008.02.039.
- [29] E. Chołodowicz and P. Orłowski, “Comparison of SPEA2 and NSGA-II applied to automatic inventory control system using hypervolume indicator,” Stud. Inform. Control, vol. 26, no. 1, pp. 67–74, 2017, doi: 10.24846/v26i1y201708.
- [30] P. Ignaciuk and Ł. Wieczorek, “Application of continuous genetic algorithms for optimization of logistic networks governed by order-up-to inventory policy,” Int. J. New Comput. Archit. Appl., vol. 7, no. 1, pp. 29–36, 2017.
- [31] E. Cholodowicz and P. Orlowski, “Impact of control system structure and performance of inventory goods flow system with long-variable delay,” Elektron. ir Elektrotechnika, vol. 24, no. 1, p. 11–16, 2018, doi: 10.5755/j01.eie.24.1.14244.
- [32] E. Cholodowicz and P. Orlowski, “Robust control of perishable inventory with uncertain lead time using neural networks and genetic algorithm,” in International Conference on Computational Science, Springer, 2022 (accepted).
- [33] V. Gabrel, C. Murat, and A. Thiele, “Recent advances in robust optimization: An overview,” Eur. J. Oper. Res., vol. 235, no. 3, pp. 471–483, Jun. 16, 2014, doi: 10.1016/j.ejor.2013.09.036.
- [34] P. Ignaciuk and Ł.Wieczorek, “Bi-objective Optimization of Logistic Networks with Full-Connectivity Structure Using NSGAII,” Int. J. Model. Optim., vol. 9, no. 2, pp. 55–61, 2019.
- [35] W. He, “An inventory controlled supply chain model based on improved BP neural network,” Discret. Dyn. Nat. Soc., vol. 2013, p. 537675, 2013, doi: 10.1155/2013/537675.
- [36] J. Farhat and M. Owayjan, “ERP Neural Network Inventory Control,” Procedia Comput. Sci., vol. 114, pp. 288–295, Jan. 2017, doi: 10.1016/j.procs.2017.09.039.
- [37] S.F. Bardeji, A.M.F. Saghih, A. Pooya, and S.H. Mirghaderi, “Perishable inventory management using GA-ANN and ICAANN,” Int. J. Procure. Manag., vol. 13, no. 3, pp. 347–382, 2020, doi: 10.1504/IJPM.2020.107466.
- [38] S.R. Hong, S.T. Kim, and C.O. Kim, “Neural network controller with on-line inventory feedback data in RFID-enabled supply chain,” Int. J. Prod. Res., vol. 48, no. 9, pp. 2613–2632, 2010.
- [39] F.Y. Partovi and M. Anandarajan, “Classifying inventory using an artificial neural network approach,” Comput. Ind. Eng., vol. 41, no. 4, pp. 389–404, Feb. 2002, doi: 10.1016/s0360-8352(01)00064-x.
- [40] S. Ding, C. Su, and J. Yu, “An optimizing BP neural network algorithm based on genetic algorithm,” Artif. Intell. Rev., vol. 36, no. 2, pp. 153–162, Aug. 2011, doi: 10.1007/s10462-011-9208-z.
- [41] P. Aengchuan and B. Phruksaphanrat, “Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS + ANN) and FIS with adaptive neuro-fuzzy inference system (FIS + ANFIS) for inventory control,” J. Intell. Manuf., vol. 29, no. 4, pp. 905–923, Apr. 2018, doi: 10.1007/s10845-015-1146-1.
- [42] P. Ignaciuk, “Dead-time compensation in continuous-review perishable inventory systems with multiple supply alternatives,” J. Process Control, vol. 22, no. 5, pp. 915–924, Jun. 2012, doi: 10.1016/j.jprocont.2012.03.006.
- [43] P. Ignaciuk, “Distributed Order-Up-To Inventory Control in Networked Supply Systems with Delay,” IEEE/CAA J. Autom. Sin., vol. 8, no. 10, pp. 1709–1714, Oct. 2021, doi: 10.1109/JAS.2021.1004147.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0dfc78f9-23db-49b2-83b2-40c6c4303822