PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical Characteristics of Aceh Traditional Salt and Its Potential as Raw Material for Thermal Energy Storage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal energy storage is an important element in order to conserve the energy and optimize the overall efficiency. Development of energy storage system for local purposes requires some information on the raw material which is abundantly available in the local market. This study aimed to investigate the characteristics of traditionally produced salt in Aceh in terms of its potential use as a raw material for thermal energy storage. The sample was collected from the Aceh Besar District and treated by heating at temperatures of 400 °C and 800 °C in a muffle furnace. This treatment is carried out to study the changes in properties and define the best procedure for salt preparation. All samples were characterized under a number of techniques including XRF, XRD, SEM/EDS, TGA/DSC analysis, density, thermal conductivity, and electrolytic conductivity. The XRF characterization showed that the local Aceh salt was graded as a category III salt. Furthermore, according to the TGA/DSC characterization, the melting temperature is close to 800 °C, and the enthalpy value is close to 492 kJ/kg. It is ample evidence that the Aceh salt can be used as a thermal energy storage material. Furthermore, increasing the temperature of local salt’s heat treatment contributes to increasing the enthalpy value, crystal size, density, thermal conductivity, and electrolyte conductivity.
Rocznik
Strony
116--122
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Doctoral Program in Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Padang Bulan, 20155, Medan, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam, 23111, Banda Aceh, Indonesia
  • Doctoral Program in Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Padang Bulan, 20155, Medan, Indonesia
autor
  • Mechanical Engineering Department, Faculty of Engineering, Universitas Malikussaleh, Bukit Indah, 24352, Lhokseumawe, Indonesia
  • Magister Program in Renewable Engineering, Faculty of Engineering, Universitas Malikussaleh, Bukit Indah, 24352, Lhokseumawe, Indonesia
  • Departement of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Medan, 20221, Medan, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam, 23111, Banda Aceh, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam, 23111, Banda Aceh, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam, 23111, Banda Aceh, Indonesia
  • Magister Program in Renewable Engineering, Faculty of Engineering, Universitas Malikussaleh, Bukit Indah, 24352, Lhokseumawe, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam, 23111, Banda Aceh, Indonesia
Bibliografia
  • 1. Agyenim F., Hewitt N., Eames P., Smyth M. 2010. A review of materials, heat transfer and phase change problem formulation for latent heat thermal Energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14, 615–628. https://doi.org/10.1016/j.rser.2009.10.015
  • 2. Anand A., Shukla A., Sharma A. 2020. Thermal Energy Storage Using Phase Change Materials: An Overview, Latent Heat-Based Thermal Energy Storage Systems. https://doi.org/10.1201/9780429328640–1
  • 3. Callister W.D. 1991. Materials science and engineering: An introduction (2nd edition). Materials & Design, 12, 59. https://doi.org/10.1016/0261–3069(91)90101–9
  • 4. Gunawati, Dongoran A.H., Setiawan A. 2019a. Evaluation on performance of cold storage box enveloped with phase change materials. Journal of Physics: Conference Series, 1242. https://doi.org/10.1088/1742–6596/1242/1/012023
  • 5. Gunawati, Noor N., Sebayang K., Setiawan A. 2019b. Experimental investigation of a cold storage box with Aceh locally produced hydrated salt as phase change materials: Effect of salt treatment. IOP Conference Series: Earth and Environmental Science, 364. https://doi.org/10.1088/1755–1315/364/1/012019
  • 6. Mehling H., Cabeza L.F. 2000. Heat and cold storage with PCM, Journal of Visual Languages & Computing.
  • 7. Jegadheeswaran S., Pohekar S.D. 2009. Performance enhancement in latent heat thermal storage system: A review. Renewable and Sustainable Energy Reviews, 13, 2225–2244. https://doi.org/10.1016/j.rser.2009.06.024
  • 8. Jiang Y., Sun Y., Liu M., Bruno F., Li S. 2016. Eutectic Na2CO3-NaCl salt: A new phase change material for high temperature thermal storage. Solar Energy Materials and Solar Cells, 152, 155–160. https://doi.org/10.1016/j.solmat.2016.04.002
  • 9. Mehling H., Cabeza F. 2008. Heat and Cold Storage with PCM: An Up to Date Introduction Into Basic and Aplications. Springer, Berlin.
  • 10. Myers P.D., Goswami D.Y. 2016. Thermal Energy storage using chloride salts and their eutectics. Applied Thermal Engineering, 109, 889–900. https://doi.org/10.1016/j.applthermaleng.2016.07.046
  • 11. Nazir H., Batool M., Bolivar Osorio F.J., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannan A.M. 2019. Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 129, 491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
  • 12. Salim Z., Munadi E. 2016. Info Komoditi Garam, Al Mawardi Prima.
  • 13. Schindler A., Schöneich M., n.d. Investigation of Alkali Salts, 1–5.
  • 14. Sharma A., Tyagi V.V., Chen C.R., Buddhi D. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, 318–345. https://doi.org/10.1016/j.rser.2007.10.005
  • 15. Strizhenok A.V., Ivanov A.V. 2021. Monitoring of Air Pollution in the Area Affected by the Storage of Primary Oil Refining Waste, 22, 60–67.
  • 16. Tian H., Du L., Huang C., Wei X., Wang W., Ding J. 2017. Enhanced Specific Heat of Chloride Salt with Mg Particles for High-temperature Thermal Energy Storage. Energy Procedia, 105, 4402–4407. https://doi.org/10.1016/j.egypro.2017.03.934
  • 17. Yalçin Ş., Mutlu İ.H. 2012. Structural Characterization of Some Table Salt Samples by XRD, ICP, FTIR and XRF Techniques, 121, 1–3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0df223d8-571b-474c-98ec-172870972e13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.