Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Utilization of empty fruit bunches (EFB) to increase biogas production could be developed through co-digestion of palm oil mill effluent (POME). Pre-treatment of EFB (shredding, grinding, and soaking) before it is utilized as a feedstock for biogas production is important to increase the biodegradability of EFB. The evaluation of the impact of EFB utilization on biogas production should be investigated to determine the optimum process conditions for biogas production from EFB and POME. This research consists of three steps: 1) Optimization of size of EFB and ratio of EFB-POME, 2) Optimization of hydrolysis and acidification retention time, and 3) Optimization of biogas production. The research result shows that co-digestion of EFB and POME increases biogas and methane production. Compared to POME only, co-digestion using POME and EFB (shredded 10%, shredded 15%, crushed 10%, and crushed 15%) is increasing biogas production in batch systems by 54.1%, 54.1%, 45.5%, and 75.2%, respectively. The research result also shows that in a continuous system with HRT for 25 days and similar feedstock, biogas production increased by 43.3%, 41.6%, 35.6%, and 62.6%, respectively, with methane concentrations maintained at about 60%. Co-digestion of EFB-POME with 15% crushed EFB is recommended to be applied in palm oil mills to increase biogas production.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
334--349
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Department of Food Techonolgy, Sahid University, South Jakarta, Jakarta, Indonesia
autor
- Department of Agroindustrial Technology, University of Lampung, Bandar Lampung, Lampung, Indonesia
autor
- Department of Agroindustrial Technology, University of Lampung, Bandar Lampung, Lampung, Indonesia
autor
- Department of Agroindustrial Technology, University of Lampung, Bandar Lampung, Lampung, Indonesia
Bibliografia
- 1. Aldrich Piolo, J. M., Legowo, E. H., Indriani Widiputri, D. 2022. Study of Biogas Production From Palm Oil Solid Wastes: A Review.
- 2. Anwar, H., Widjaja, T., Prajitno, D. H. 2021. Produksi Biogas dari Jerami Padi Menggunakan Cairan Rumen dan Kotoran Sapi. CHEESA: Chemical Engineering Research Articles, 4(1), 1. https:// doi.org/10.25273/cheesa.v4i1.7406.1-10
- 3. Cai, M., Chua, H., Zhao, Q., Sin, N., Ren, J. 2009. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresource Technology, 100, 1399–1405.
- 4. Chaiprasert, P., Hudayah, N., Auphimai, C. 2017. Efficacies of Various Anaerobic Starter Seeds for Biogas Production from Different Types of Wastewater. BioMed Research International, 2017. https:// doi.org/10.1155/2017/2782850
- 5. Duan, N., Dong, B., Wu, B., Dai, X. 2012. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Bioresource Technology, 104, 150–156.
- 6. Fang, H. H., Yu, H. Q. 2000. Effect of HRT on mesophilic acidogenesis of dairy wastewater. Journal of Environmental Engineering, 126, 1145–1148.
- 7. Fitriani, F., Aprilia, S., Arahman, N., Bilad, M. R., Amin, A., Huda, N., Roslan, J. 2021. Isolation and characterization of nanocrystalline cellulose isolated from pineapple crown leaf fiber agricultural wastes using acid hydrolysis. Polymers, 13(23). https://doi.org/10.3390/polym13234188
- 8. Garcia-Aguirre, J., Aymerich, E., de Goñi, J. G. M., Esteban-Gutiérrez, M. 2017. Selective VFA production potential from organic waste streams: assessing temperature and pH influence. Bioresource Technology, 244, 1081–1088.
- 9. Haryanto, A., Okfrianas, R., Rahmawati, W. 2019. Pengaruh komposisi subtrat dari campuran kotoran sapi dan rumput gajah (Pennisetum purpureum) terhadap produktivitas biogas pada digester semi kontinu. Jurnal Rekayasa Proses, 13, 47–56.
- 10. Ibro, M. K., Ancha, V. R., Lemma, D. B. 2022. Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review. In Sustainability (Switzerland) 14(15). MDPI. https://doi. org/10.3390/su14159387
- 11. Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C., Li, M. 2013. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresource Technology, 143, 525–530.
- 12. Jie, W., Peng, Y., Ren, N., Li, B. 2014. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresource Technology, 152, 124–129.
- 13. Kalsum, L., Rusdianasari, Hasan, A. 2022. The Effect of the Packing Flow Area and Biogas Flow Rate on Biogas Purification in Packed Bed Scrubber. Journal of Ecological Engineering, 23(11), 49–56. https://doi.org/10.12911/22998993/153569
- 14. Lv, N., Cai, G., Pan, X., Li, Y., Wang, R., Li, J., Li, C., Zhu, G. 2022. pH and hydraulic retention time regulation for anaerobic fermentation: Focus on volatile fatty acids production/distribution, microbial community succession and interactive correlation. Bioresource Technology, 347. https://doi. org/10.1016/j.biortech.2021.126310
- 15. Mahajoeno, E. 2008. Pengembangan energi terbarukan dari limbah cair pabrik minyak kelapa sawit.
- 16. Maharaj, I., Elefsiniotis, P. 2001. The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters. Bioresource Technology, 76, 191–197.
- 17. Mao, C., Feng, Y., Wang, X., Ren, G. 2015. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.
- 18. Marbun, T. K. 2018. Co-digestion sampah pasar dan feses sapi untuk meningkatkan produksi Biogas. Institut Teknologi Sepuluh November.
- 19. Ni’mah, L., Jend, J. A., Yani, K., Selatan, B. K. 2014. Biogas from solid waste of tofu production and cow manure mixture: composition effect. 1(1), 1–9.
- 20. Nurliyana, M. Y., H’ng, P. S., Rasmina, H., Kalsom, M. S. U., Chin, K. L., Lee, S. H., Lum, W. C., Khoo, G. D. 2015. Effect of C/N ratio in methane productivity and biodegradability during facultative co-digestion of palm oil mill effluent and empty fruit bunch. Industrial Crops and Products, 76, 409–415.
- 21. Prihartini, I., Ari, M., Atoum, M. F. M., Ismail, A. S., Hendraningsih, L. 2021. The Effect of Supplementation Lignolitic Probiotic in Rice Straw for Digestibility and Efficiency of Microbial Protein Synthesis using In Vitro Residual Gas Production. Sarhad Journal of Agriculture, 37(1), 136–143. https://doi.org/10.17582/ JOURNAL.SJA/2021.37.S1.136.143
- 22. Saelor, S., Kongjan, P., O-Thong, S. 2017. Biogas production from anaerobic co-digestion of palm oil mill effluent and empty fruit bunches. Energy Procedia, 138, 717–722. https://doi.org/10.1016/j. egypro.2017.10.206
- 23. Saragih, B. R. 2010. Analisis potensi biogas untuk menghasilkan energi listrik dan termal pada gedung komersil di daerah perkotaan (studi kasus pada mal metropolitan bekasi). Universitas Indonesia.
- 24. Sarwono, R., Hariyanto, A., Puspitadewi, R., Kurniawan, H. H., Fatah, S. 2016. Conversion of waste palm oil empty fruit bunches into glucose using hydrothermal process without pretreatment. Biopropal Industri, 7(2), 63–71. http://ejournal.kemenperin.go.id/ biopropal/article/view/695
- 25. Simeonov, I., Chorukova, E., Mihaylova, S., Kalchev, B., Marinova, S. 2012. Study on the Anaerobic CoDigestion of Wasted Fruits and Vegetables. https:// www.researchgate.net/publication/268206036
- 26. Strazzera, G., Battista, F., Andreolli, M., Menini, M., Bolzonella, D., Lampis, S. 2021. Influence of different household food wastes fractions on volatile fatty acids production by anaerobic fermentation. Bioresource Technology, 335(125289).
- 27. Suksong, W., Kongjan, P., Prasertsan, P., Imai, T., Sompong, O. 2016. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresource Technology, 214, 166–174.
- 28. Syaichurrozi, I. 2015. Pencernaan Campuran Limbah Vinase dan Limbah Cair Tahu untuk Meningkatkan Produksi Biogas Co-Digestion of Vinasse Waste and Tofu Liquid Waste to Increase Biogas Production: 12(2).
- 29. Taherzadeh, M. J., Karimi, K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. In International Journal of Molecular Sciences 9(9). https://doi.org/10.3390/ ijms9091621
- 30. Wadchasit, P., Siripattana, C., Nuithitikul, K. 2020. The effect of pretreatment methods for improved biogas production from oil-palm empty fruit bunches (EFB): Experimental and model. IOP Conference Series: Earth and Environmental Science, 463(1). https://doi.org/10.1088/1755-1315/463/1/012126
- 31. Wang, Q., Kuninobu, M., Ogawa, H. I., Kato, Y. 1999. Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass and Bioenergy, 16, 407–416.
- 32. Zarkadas, I. S., Sofikiti, A. S., Voudrias, E. A., Pilidis, G. A. 2015. Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters: Focussing on mixing ratios. Renewable Energy, 80, 432–440.
- 33. Zheng, Y., Zhao, J., Xu, F., Li, Y. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35–53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0def46f4-4bca-4d11-baa6-6bcad2187186