PREMISES AND THE EXAMPLE OF PARAMETRIC METHOD OF EVALUATION OF TECHNICAL CONDITION OF THE TURMOMACHINE BLADE WITH ELIMINATION OF ITS IMMEASURABLE ENVIRONMENT

PRZESŁANKI I PRZYKŁAD PARAMETRYCZNEJ METODY OCENY STANU TECHNICZNEGO ŁOPATKI MASZYNY WIRNIKOWEJ Z ELIMINACJĄ JEJ NIEMIERZALNEGO OTOCZENIA

Paweł Lindstedt¹, Rafał Grądzki²

¹Instytut Techniczny Wojsk Lotniczych, ²Politechnika Białostocka, p.lindstedt@pb.edu.pl; r.gradzki@pb.edu.pl

Abstract: This paper presents tests results of methods of monitoring technical condition of turbomachine blades based on diagnostic models $A_{T12,T01}^2$ and $\varphi_{T12,T01}$ during their use. The first method utilizes the diagnostic model $A_{T12,T01}^2$ which is in the form of the amplitude amplification quotient of the diagnostic signal y(t) resulting from blade operation and the signal x(t) of its environment while the blade tip approaches the sensor and amplitude amplification of those signals while the blade tip moves away from the sensor. The second method which is based on the diagnostic model $\varphi_{T12,T01}$ utilizes the difference of phase shift of those signals when the blade diagnostic models indirectly take into account present blade environment x(t) without the need to measure it [13,15]. Results obtained for the model $\varphi_{T12,T01}$ were compared with the results obtained for the model $A_{T12,T01}^2$. The aim of this study is to present the use of diagnostic models for diagnostics of turbomachine blades during operation without the need to measure the environmental signal.

Keywords: diagnostics, turbomachine blade, amplitude amplification, phase shifts

Streszczenie: W artykule przedstawiono wyniki badań metod monitorowania stanu technicznego lopatek maszyn wirnikowych bazujących na modelach $A^2_{T12,T01}$ oraz $\varphi_{T12,T01}$ podczas ich użytkowania. Pierwsza metoda wykorzystująca model diagnostyczny $A^2_{T12,T01}$ jest w postaci ilorazu wzmocnienia amplitudowego sygnału diagnostycznego y(t) wynikającego z działania łopatki i sygnału x(t) jej otoczenia podczas zbliżania się wierzchołka łopatki do czujnika i wzmocnienia amplitudowego tych sygnałów podczas oddalania się wierzchołka łopatki od czujnika. Druga metoda bazująca na modelu diagnostycznym $\varphi_{T12,T01}$ wykorzystuje różnicę przesunięcia fazowego tychże sygnałów podczas oddalania się łopatki od czujnika i zbliżania się wierzchołka łopatki do czujnika i posteci pośrednio uwzględniają aktualne otoczenie łopatki x(t) bez konieczności jego pomiaru [13,15]. Wyniki otrzymane dla modelu $\varphi_{T12,T01}$ porównano z wynikami otrzymanymi dla modelu $A^2_{T12,T01}$.

Słowa kluczowe: diagnostyka, łopatka maszyny wirnikowej, wzmocnienie amplitudowe, przesunięcia fazowe

1. Wstęp

Silniki turbinowe stanowiące napęd maszyn poddawane są znacznym obciążeniom, zróżnicowanym w czasie. Ich zwarta konstrukcja utrudnia diagnozowanie uszkodzeń zwłaszcza części wirujących. Jednym z podstawowych elementów odpowiedzialnych za niezawodną i bezpieczną pracę maszyny wirnikowej jest łopatka, której uszkodzenie może prowadzi do uszkodzenia maszyny, a w szczególnych przypadkach (urwanie fragmentu lub całej łopatki) do całkowitego zniszczenia maszyny wirnikowej a to w konsekwencji przeważnie prowadzi do tragicznych w skutkach katastrof. Stąd w procesie obsługi tych maszyn bardzo dużo uwagi poświęca się problemom niezawodności i diagnostyki łopatek maszyn wirnikowych.

Obecnie stosuje się wiele metod diagnozowania stanu technicznego łopatek podczas pracy maszyny wirnikowej (metoda prądów wirowych, metoda ultradźwiękowa, metoda radiograficzna, metoda defektoskopii kolorowej i luminescencyjnej oraz metoda wibroakustyczna).

Badania diagnostyczne metodą wibroakustyczną bazują na tzw. "bezdotykowym" pomiarze wartości bieżących przemieszczeń wierzchołka łopatki w krótkich chwilach, gdy znajduje się ona w strefie pod specjalizowanym czujnikiem. Opracowano i wdrożono wiele "bezdotykowych" systemów pomiarowych. Są to powszechnie znane i stosowane systemy pomiarowe wykonane przez firmy: Hood, Aqilis, Prat & Whi-they (USA), Rolls Royce (UK), Turbocharges (Szwajcaria), MTU (Niemcy), a także firmy rosyjskie, chińskie i indyjskie. [2,4,5,6,7,8,9,10,11,12,21,26]

Znane i stosowane są także polskie bezdotykowe układy pomiarowe szczególnie te zaprojektowane, wykonane i wdrożone przez Instytut Techniczny Wojsk Lotniczych (ITWL) – Warszawa. Wśród metod bezdotykowego pomiaru przemieszczeń łopatki wykonanych przez ITWL wymienia się [18,24,25]:

- sygnalizator pęknięć łopatek: SPŁ 29
- sygnalizator nadmiernych drgań łopatek: SNDŁ 2b
- czujniki mikrofalowe: MUH, PIT

Z dużym powodzeniem pracują one na konkretnych eksploatowanych obiektach technicznych (silniki SO-3).

Wnioskowanie diagnostyczne stosowane w dotychczasowych metodach oceny stanu technicznego łopatek bazują tylko na przetwarzaniu zmierzonych podczas badań diagnostycznych, sygnałów wynikających z działania łopatki bez wystarczającego (zdaniem autorów) uwzględnienia sygnałów (o znacznej mocy) jej zmiennego otoczenia.

Pomiary sygnałów otoczenia łopatki podczas pracy maszyny wirnikowej są trudne a często niemożliwe i właśnie, dlatego są w niewystarczającym stopniu uwzględniane w diagnostyce łopatek.

Dlatego można stwierdzić, że dotychczasowe metody oceny stanu technicznego łopatek podczas pracy maszyn wirnikowych nie w pełni realizują podstawową zasadę diagnostyki technicznej nakazującej badanie i analizę stanu technicznego obiektu w otoczeniu (PN-90/N-04002) i stąd nie są odpowiednio dokładne i wiarygodne. Stąd pojawiła się potrzeba opracowania nowej metody diagnozowania stanu technicznego łopatki podczas pracy maszyny wirnikowej z uwzględnieniem otoczenia, ale (jeśli to możliwe) bez konieczności wykorzystywania pomiaru niedostępnych często trudno mierzalnych sygnałów otoczenia. Problem ten rozwiązuje metoda diagnozowania łopatki bazująca na specjalnym modelu diagnostycznym pozwalającym specjalnymi zabiegami eliminować jej realnie istniejące otoczenie.

2. Działanie łopatki w niemierzalnym otoczeniu

Łopatka, jej budowa i działanie, podczas pracy w zmiennym otoczeniu [18,22] przedstawiono na rys. 1. Łopatka składa się z dwóch części: roboczej zwanej również profilową –1 (pióro łopatki) i części mocującej –2 (zamka).

Łopatki wirnika zamocowane są w tarczy za pomocą zamków trapezowych zwanych " jaskółczym ogonem", a szczeliny między zamkami łopatek, a wycięciami tarcz wypełnione są żywicą poliestrową. Dla zwiększenia odporności na korozję łopatki pokryte są emalią epoksydową.

Rys. 1 Łopatka maszyny wirnikowej w zmiennym otoczeniu, gdzie:

1–pióro lopatki; 2–zamek lopatki; 3–krawędź spływu; 4–krawędź natarcia; 5–wierzchołek lopatki; 6–grzbiet lopatki; 7–koryto lopatki; 8–bęben wirnika;

 F_0 –siła odśrodkowa; F_z –siła zacisku zamka; n–prędkość obrotowa; P_z –aerodynamiczna siła nośna łopatki; P_x –siła oporu; M_s –moment skręcający; M_g –moment zginający;

 P_1 -ciśnienie gazu na wejściu wieńca wirnika; P_2 -ciśnienie gazu na wyjściu wieńca wirnika; Y_g -ugięcie lopatki; Y_s -kąt skręcania lopatki; Y_w -przemieszczenie wzdłużne lopatki; Y_f – sygnał różnych postaci drgań (zginające, skręcające, wzdłużne); Y_c – odkształcenie cieplne; f – sygnał drgań; c – sygnał rozkładu temperatury.

Podczas użytkowania łopatki zmienia się jej stan techniczny aż do pojawienia się bardzo różnych uszkodzeń (pęknięć, odkształceń, wżerów, urwania fragmentu pióra) [22].

Premises and the example of parametric method of evaluation... Przesłanki i przykład parametrycznej metody oceny stanu technicznego lopatki...

Z rys.1 i rys.2 widać, że łopatka (sprężarki, turbiny) jest obiektem technicznym, o złożonym sposobie działania, który musi być opisany wielowymiarowym stanem odkształcenia łopatki.

Odkształcenia te pochodzą od otoczenia i wywołane są wieloma przyczynami, którymi są:

- obciążenia od sił odśrodkowych F₀ zależnych od prędkości obrotowej wywołujących odkształcenia wzdłużne i zginające (rys.1) Y_w, Y_g;
- obciążenia gazodynamiczne P_z i P_x od strumienia powietrza (gazu) zależne też od prędkości i wysokości lotu (rys.1) Y_s (gdy maszyną wirnikową jest sprężarka lub turbiną silnika);
- obciążenia spowodowane lotem samolotu po torach krzywoliniowych (rys.1)
 Y_g, Y_s;
- obciążenia dynamiczne towarzyszące drganiom mechanicznym (zwłaszcza w zakresie rezonansowym) od pulsacji ciśnienia P₁ i P₂, wahań obrotów itp. (rys.2) Y_f;
- drgania łopatki i obudowy f (rys.1) i stąd Y_g, Y_s;
- obciążenia cieplne c od nierównomiernego rozkładu temperatur (rys.2 odkształcenie złożone np. I 6) Y_c .

Rys. 2 Formy drgań i linie określające ślady węzłów drgań.

Schemat I: 1, 2, 3 – pierwsza, druga i trzecia forma drgań zginających; 4 – drgania skręcające pierwszego rodzaju; 5 – drgania skręcające drugiego rodzaju; 6 – złożone drgania zginająco – skręcające. Schemat II: Fotografie śladów węzłów przy drugiej formie drgań zginających. Schemat III: Fotografie śladów węzłów przy trzeciej formie drgań zginających.

Kompleksowo problem ujmując stan działania łopatki w otoczeniu może być opisany sygnałem przemieszczenia wierzchołka łopatki y(t), który jest wypadkową sygnałów Y_w , Y_g , Y_s , Y_f , Y_c , (rys.1 i rys.2):

$$y(t) = f(Y_w, Y_g, Y_s, Y_f, Y_c)$$
(1)

oraz sygnałem otoczenia, x(t) który jest wypadkową sygnałów: n, F_o, P_z, P_x, P₁, P₂, f, c (rys.1 i rys.2):

$$x(t) = f(n, F_{o}, P_{z}, P_{x}, P_{1}, P_{2}, f, c)$$
(2)

Stan techniczny łopatki $S_T(\theta)$ zgodnie z zasadami diagnostyki wynika z relacji między sygnałem działania y(t) i sygnałem otoczenia x(t) w chwili aktualnego diagnozowania θ_1 i chwili początkowego (wzorcowego) diagnozowania θ_0 (przy czym θ to czas przemiany stanu technicznego – ewolucji). Zatem można zapisać:

$$\mathbf{S}_{T}(\theta) = \mathbf{f}(\mathbf{y}(\mathbf{t})_{\theta_{0}} \mathbf{x}(\mathbf{t})_{\theta_{0}} \mathbf{y}(\mathbf{t})_{\theta_{1}} \mathbf{x}(\mathbf{t})_{\theta_{1}} \theta, \mathbf{t})$$
(3)

Praktyka eksploatacyjna wielokrotnie potwierdziła, że istnieją realne trudności w procesie pomiaru sygnałów: zarówno dla y(t), a szczególnie x(t), a stąd i w ocenie ich stanu technicznego łopatki podczas pracy maszyny. [13,18]

3. Podstawy teoretyczne metody diagnozowania łopatek podczas pracy maszyny wirnikowej

Problem diagnozowania łopatki podczas pracy maszyny wirnikowej jest bardzo złożony gdyż do zrealizowania procesu diagnozowania łopatki dysponuje się tylko jednym mierzalnym i dodatkowo zakłóconym sygnałem y(t) oraz praktycznie niemierzalnym (oprócz sygnału n i t bez Δ n) sygnałem otoczenia x(t).

Wstępnie zakłada się, że sygnały x(t) i y(t) są przebiegami czasowymi, stochastycznymi i zakłóconymi. W tej sytuacji rozsądnym przedsięwzięciem jest przejście z przestrzeni czasu "t" sygnałów x(t) i y(t) do przestrzeni czasu "t" funkcji korelacji $R_{xx}(\tau)$, $R_{yy}(\tau)$ i $R_{xy}(\tau)$.

Efektem takiego podejścia jest:

- odkłócenie sygnałów i możliwość ich wzmocnienia;
- możliwość prostego wyrażenia sygnałów $R_{xx}(\tau)$, $R_{yy}(\tau)$ i $R_{xy}(\tau)$ w postaci funkcji analitycznych, co stwarza szerokie możliwości dalszego przetwarzania tych funkcji na nowe (o szczególnych własnościach) funkcje w przestrzeni częstotliwości (ω), którymi są funkcje gęstości mocy własnej sygnałów $S_{xx}(\omega)$ i $S_{yy}(\omega)$ i wzajemnej $S_{xy}(\omega)$. Czas obserwacji T_{02} wierzchołka łopatki dzieli się na dwa podokresy – podokres T_{01} zbliżania się łopatki do czujnika i podokres T_{12} oddalania się łopatki od czujnika, chwila T_1 to moment, gdy łopatka znajduje się dokładnie pod czujnikiem.

Wyrażenie funkcji x(t) i y(t) w postaci funkcji $S_{xx}(\omega)$, $S_{yy}(\omega)$ i $S_{xy}(\omega)$ pozwoli w bardzo prosty sposób uwzględnić relacje między sygnałami diagnostycznymi y(t) i sygnałami otoczenia x(t) dla poszczególnych okresów obserwacji sygnału.

Premises and the example of parametric method of evaluation... Przesłanki i przykład parametrycznej metody oceny stanu technicznego lopatki...

Można, bowiem zapisać:

$$A_{T01}^2 = \frac{S_{yy}^{T01}}{S_{xx}^{T01}} \qquad \qquad \varphi_{T01} = Arg \frac{S_{xy}^{T01}}{S_{xx}^{T01}} \tag{4}$$

$$A_{T12}^{2} = \frac{S_{yy}^{T12}}{S_{rr}^{T12}} \qquad \qquad \varphi_{T12} = Arg \frac{S_{xy}^{T12}}{S_{rr}^{T12}} \tag{5}$$

gdzie: A_{2T01} , ϕ_{T01} – wzmocnienie amplitudowe i przesunięcie fazowe sygnałów x i y w czasie zbliżania się łopatki do czujnika T_{01} ; A^2_{T12} , ϕ_{T12} – wzmocnienie amplitudowe i przesunięcie fazowe sygnałów x i y w czasie oddalania się łopatki od czujnika T_{12} .

Dalej można założyć, że okres obserwacji sygnałów T_{12} następuje bardzo krótko (ms) po czasie obserwacji sygnałów T_{01} .

W takim wypadku można założyć, że:

$$S_{xx}^{T12} = S_{xx}^{T01}$$
(6)

Wtedy bazując na wzorach 4, 5 i 6 można otrzymać nową abstrakcyjną ale fizycznie interpretowalną wielkość w postaci ilorazu wzmocnień amplitudowych A_{T01}^2 i A_{T12}^2 oraz przesunięć fazowych φ_{T01} i φ_{T12} :

$$A_{T12,T01}^{2} = \frac{A_{T12}^{2}}{A_{T01}^{2}} = \frac{\frac{S_{yy}^{T12}}{S_{xx}^{T12}}}{\frac{S_{yy}^{T01}}{S_{xx}^{T01}}} \xrightarrow{S_{xx}^{T12} = S_{xx}^{T01}} \xrightarrow{S_{yy}^{T12}} \frac{S_{yy}^{T12}}{S_{yy}^{T01}} \xrightarrow{S_{yy}^{T12}} (7)$$

$$\varphi_{T12,T01} = \varphi_{T12} - \varphi_{T01} = Arg \frac{\frac{S_{xy}^{T12}}{S_{xx}^{T01}}}{\frac{S_{xy}^{T01}}{S_{xx}^{T01}}} = Arg \frac{A_{T12}e^{-j\varphi_{T12}}}{A_{T01}e^{-j\varphi_{T01}}} = Arg A_{T12T01}e^{-j(\varphi_{T12}-\varphi_{T01})} \xrightarrow{S_{xx}^{T12}=S_{xx}^{T01}} Arg \frac{S_{xy}^{T12}}{S_{xy}^{T01}}$$
(8)

....

Wyrażenie $A^2_{T12,T01}$ (7) wiąże sygnały diagnostyczne y(t) z sygnałami otoczenia x(t), zatem jest modelem diagnostycznym. Cechą charakterystyczną tego modelu jest to, że jest wyznaczany tylko na podstawie mierzalnego sygnału y(t) w krótko po sobie następujących czasach obserwacji T₀₁ i T₁₂ oraz to (co jest najważniejsze), że uwzględnia on otoczenie x(t) bez konieczności jego pomiaru, a także że sygnał y(t) został wystarczająco odkłócony. [13,18]

Wyrażenie $\varphi_{T12,T01}(8)$ wiąże sygnały diagnostyczne y(t) z sygnałami otoczenia x(t), zatem jest kolejnym modelem diagnostycznym. Jest on tak jak w przypadku modelu $A^2_{T12,T01}$ wyznaczany bez konieczności pomiaru rzeczywistego sygnału otoczenia x(t). Do wyznaczenia sygnałów S^{T12}_{xy} , S^{T01}_{xy} należy wykorzystać dystrybucję w postaci funkcji δ (t, \hat{t}), bo można łatwo udowodnić, że iloraz funkcji gęstości mocy wzajemnej sygnału y i sygnału x jest niewrażliwy na sygnały otocznia x, zatem w dostatecznym stopniu eliminuje rzeczywiste otoczenie z modelu $\varphi_{T12,T01}$. [1,18,23]

4. Schemat stanowiska pomiarowego

Przeprowadzenie badań łopatki zrealizowano na hamowni silników turbinowych w Instytucie Technicznym Wojsk Lotniczych w Warszawie. Przedmiotem badań są łopatki I stopnia sprężarki osiowej silnika SO-3.

W kadłubie silnika turbinowego montuje się na stałe bezdotykowy czujnik indukcyjny (lub innego typu) (rys.3) do pomiaru chwilowego położenia wierzchołków łopatek sprężarki w czasie pracy. Sygnał z czujnika rejestrowany jest za pomocą specjalistycznej aparatury i zapisywany w komputerze. Przeprowadzone badania zostały wykonane dla prędkości obrotowej minimalnej wynoszącej 6900 obr/min.

Rys. 3. Stanowisko pomiarowe: 1 – silnik turbinowy SO-3, 2 – urządzenie pomiarowe, 3 – bezdotykowy czujnik indukcyjny, 4 – łopatki sprężarki, 5 – łopatki kierownicy.

Premises and the example of parametric method of evaluation... Przesłanki i przykład parametrycznej metody oceny stanu technicznego łopatki...

5. Obiekt badań

Obiektem badań były łopatki I stopnia sprężarki osiowej silnika turbinowego SO-3. Do analizy wzięto 3 z 28 dostępnych łopatek zamocowanych w bębnie wirnika. W wyborze łopatki kierowano się aby jedna z nich odbiegała stanem technicznym od pozostałych. Zdjęcia łopatek wykonano endoskopem firmy Everest XLG3 znajdującym się na wyposażeniu ITWL. Wykonane fotografie wraz z uchwyconymi uszkodzeniami ukazano na Rys.4, 5 i 6.

Rys. 4 Lopatka numer 1: a) krawędź natarcia od strony grzbietu od strony zamka, b) krawędź natarcia od strony koryta, c) krawędź natarcia od strony wierzchołka od strony koryta d) wierzchołek.

Rys. 5 Łopatka numer 11:

Rys. 6. Łopatka numer 3: a) krawędź natarcia od strony grzbietu od strony zamka, b) krawędź natarcia od strony koryta, c) krawędź natarcia od strony wierzchołka od strony koryta d) wierzchołek.

Na rys.4b) i 4c) występują liczne wżery erozyjne na krawędzi natarcia, na rys.4d) naciek emalii z lewej strony wierzchołka. Na rys.5b) drobne ślady erozji od strony koryta, 5c) na części krawędzi natarcia od strony wierzchołka ubytki emalii. Na rys.6 brak wyraźnych uszkodzeń.

6. Metoda oceny bieżącego stanu technicznego lopatki na podstawie obserwacji parametrów modelu A²_{T12,T01} i φ_{T12,T01}

Metoda bieżącej oceny zmian stanu technicznego łopatki maszyny wirnikowej bazująca na obserwacji zmian parametrów modelu $A^2_{T12,T01}$ i $\varphi_{T12,T01}$ wymaga odpowiednich badań diagnostycznych. Zarejestrowany sygnał przemieszczania się wierzchołka łopatki pod czujnikiem przedstawiono na rys.7.

Rys. 7 Sygnał z czujnika indukcyjnego

 T_{02d} , T_{02k} – odpowiednio – długi i krótki okres obserwacji przebywania wierzchołka łopatki w strefie czujnika, T_0 , T_1 , T_2 – charakterystyczne chwile obserwacji wierzchołka łopatki pod czujnikiem, T_{01} , T_{12} – podokresy obserwacji wierzchołka łopatki odpowiednio dla T_d i T_k , mV – sygnał przemieszczania wierzchołka łopatki, uS – czas przemieszczania.

Ich znamienną cechą jest to, że ustalony czas obserwacji T_{02} (o wartości T_{02d} lub T_{02k}), przemieszczania się łopatki y(t) pod czujnikiem jest odpowiednio dzielony na dwa okresy: zbliżania się łopatki do czujnika T_{01} i oddalania wierzchołka od czujnika T_{12} (chwila T_1 odpowiada sytuacji, gdy wierzchołek łopatki znajduje się dokładnie pod czujnikiem – rys.7). Przyjęcie długiego T_{02d} lub krótkiego T_{02k} czasu obserwacji łopatki (rys.7) wynika z konieczności spełnienia warunków dokładnego przetworzenia sygnału x(t) na $R_{vv}(\tau)$.

Następnie dla przemieszczenia y(t) w założonych przedziałach obserwacji T_{01} i T_{12} wyznacza się estymaty funkcji autokorelacji R^{*T01}_{yy} i R^{*T12}_{yy} , a następnie dopasowuje do nich odpowiednie wyrażenia analityczne. [1,13,14,17,18,20]

Zarejestrowane przebiegi sygnałów zostały pomnożone przez okno Hanninga, następnie obliczona została ich autokorelacja. Otrzymane przebiegi autokorelacji zostały przybliżone wielomianem piątego rzędu z dokładnością $R^2 > 0,997$ opisaną współczynnikiem determinacji.

$$R_{yy}(\tau) = a_1 \tau^5 + a_2 \tau^4 + a_3 \tau^3 + a_4 \tau^2 + a_5 \tau + a_6 \tag{9}$$

Następnie z otrzymanych analitycznych postaci funkcji korelacji własnych R^{T01}_{yy} i R^{T12}_{yy} wyznacza się odpowiadające im funkcje gęstości widmowej mocy $S^{T01}_{yy}(\omega)$ i $S^{T12}_{yy}(\omega)$ wykorzystując przekształcenie Fouriera:

$$F\left\{R_{yy}\right\} = \int_{-\infty}^{\infty} R_{yy}(\tau) e^{-j\omega\tau} d\tau$$
(10)

$$S_{yy}^{T01}(\omega) = F(R_{yy}^{T01}(\tau))$$
(11)

$$S_{vv}^{T12}(\omega) = F(R_{vv}^{T12}(\tau))$$
(12)

Ostatecznie można wyznaczyć nowy abstrakcyjny model diagnostyczny (kwadrat modułu), którego parametry niosą informację o stanie technicznym diagnozowanej łopatki [13,17]:

$$A_{T12,T01}^{2} = \frac{S_{yy}^{T12}}{S_{yy}^{T01}} = \frac{M_{0} + M_{1}s + M_{2}s^{2} + \dots + M_{5}s^{5}}{1 + L_{1}s + L_{2}s^{2} + \dots + L_{5}s^{5}}$$
(13)

Analogicznie obliczenia przeprowadza się dla modelu $\varphi_{T12,T01}$ [16], z tym że zakłada się, że otoczenie jest np. szumem δ (t, \hat{t}) o dużej mocy i że może on być skorelowany z sygnałem y(t). W ten sposób otrzymujemy nowy abstrakcyjny model diagnostyczny (różnicy przesunięć fazowych) którego parametry niosą informację o stanie technicznym diagnozowanej łopatki:

$$\varphi_{T12,T01} = Arg \frac{S_{xy}^{T12}}{S_{xy}^{T01}} = Arg \frac{B_0 + B_1 s + B_2 s^2 + \dots + B_5 s^5}{1 + A_1 s + A_2 s^2 + \dots + A_5 s^5}$$
(14)

Różnicę stanu technicznego kolejnych łopatek wyznacza się na podstawie względnych zmian parametrów $M_0 \div M_5$, $L_1 \div L_5$, $B_0 \div B_5$, $A_1 \div A_5$.

$$\Delta \overline{L}_{i} = \frac{L_{i1} - L_{sr}}{L_{sr}} ; i = 1, ..., n$$
(15)

gdzie: L_{śr} – średnia wartość parametru (wartość wzorcowa, początkowa)

$$\Delta \overline{M}_{i} = \frac{M_{i1} - M_{sr}}{M_{sr}}; i = 1, ..., m$$
(16)

gdzie: M_{śr} – średnia wartość parametru (wartość wzorcowa, początkowa)

Mając wyliczone parametry względne wylicza się: μ , σ , 2σ i 3σ (wartość średnią i odchylenie standardowe). Następnie wyznaczone wartości względne zamienia się na "+" jeżeli wartość względna przekroczyła σ , "++" jeżeli wartość względna przekroczyła 3σ . W ten sposób otrzymuje się portret łopatki, który świadczy o stanie jej zdatności. Jeżeli występują liczne "+++" świadczy o uszkodzeniu łopatki, "++" świadczy o wzmożonym zużyciu łopatki , "+" świadczy o słabym zużyciu.

Takie podejście ukazuje czytelny i jednoznaczny obraz oceny stanu uszkodzenia łopatki. Na rys. 8 a,b pokazano portret łopatki nr 1, na rys.9 portret łopatki nr 3, na rys.10 portret łopatki nr 28.

a)	Model $A^2_{T12,T01}$ – portret łopatki nr 1 – predkość minimalna											
a)	1,0	1,1	1,2	1,3	1,4	1,5	M0	M1	M2	M3	M4	M5
cykl 1	+	+	+	+	+	+	+					
cykl 2	++	++	++	++	++	++	+	+	++	++	++	++
cykl 3	++	++	++	++	++	++				+		++
cykl 4	++	++	++	++	++	++						++
cykl 5	++	++	++	++	++	++			+	+	+	++
cykl 6	++	++	++	++	++	++			+	+	+	++
cykl 7	++	++	++	++	++	++	+	+	++	++	++	++
cykl 8	++	++	++	++	++	++			+	++	+	++
cykl 9	++	++	++	++	++	++			+	++	+	++
cykl 10	++	++	++	++	++	++		+	++	++	++	++
cykl 20	++	++	++	++	++	++			+	+	+	++
cykl 30	++	++	++	++	++	++				+		++
cykl 40	++	++	++	++	++	++						++
cykl 50	++	++	++	++	++	++		+	+	++	+	++
cykl 60	++	++	++	++	++	++			+	+	+	++
cykl 70	++	++	++	++	++	++				+		++
cykl 80	++	++	++	++	++	++	+	++	++	++	++	++
cykl 90	++	++	++	++	++	++			+	+	+	++
cykl 100	++	++	++	++	++	++	+	+	+	++	+	++
cykl 200	++	++	++	++	++	++	+			+		++
cykl 300	+	+	+	+	+	+	+					+
cykl 400	++	++	++	++	++	++		+	+	++	+	++
cykl 500	++	++	++	++	++	++			+	+	+	++
cykl 600	++	++	++	++	++	++			+	+	+	++
cykl 700	++	++	++	++	++	++				+		++
cykl 800	++	++	++	++	++	++			+	+	+	++
cykl 900	++	++	++	++	++	++	+					++
cykl 1000	++	++	++	++	++	++			+	++	+	++
cykl 2000	++	++	++	++	++	++				+		++

Rys. 8 Portret lopatki nr. 1 a) dla modelu $A^2_{T12,T01}$, b) dla modelu $\varphi_{T12,T01}$.

Paweł Lindstedt, Rafał Grądzki

ĺ			м	1 1 4 2		4 41	(1 1	11	<i>,,</i>	1		
a)			Mo	del \mathbf{A}_{T12}	_{2,т01} – ро	rtret lopa	atki nr I	– predko	sc minii	nalna		
•••	1,0	1,1	1,2	1,3	1,4	1,5	MO	M1	M2	M3	M4	M5
cykl 1		+	+	+	+	+	+	+	+	+	+	+
cykl 2		+	+	+	+	+	++	++	++	++	++	+
cykl 3		+	+	+	+	+	+	+	+	+	+	+
cykl 4												
cykl 5												
cykl 6												
cykl 7										+	+	
cykl 8								+				
cykl 9												
cykl 10		+	+	+	+	+	+	+	+	+	+	+
cykl 20												
cykl 30												
cykl 40		+	+	+	+	+	+	+	++	++	++	+
cykl 50												
cykl 60												
cykl 70												
cykl 80												
cykl 90		+	+	+	+	+	++	++	++	+	++	+
cykl 100		+	+	+	+	+	++	++	++	++	++	+
cykl 200												
cykl 300							+	+	+	+	+	
cykl 400		+	+	+	+	+	++	++	++	++	++	+
cykl 500												
cykl 600							+	+	+	+	+	
cykl 700		+	+	+	+	+	+	+	+	+	+	+
cykl 800		+	+	+	+	+	+	+	++	++	++	+
cykl 900												
cykl 1000		+	+	+	+	+	+	+	+	+	+	+
cvkl 2000		+	+	+	+	+	++	++	++	++	++	+
							TT					т
- \			Mo	dal m		trat land	thi nr 1	prodko	ćá minin	aalna		т
b)	1.0		Mo	del ϕ_{T12}	. _{T01} – poi	tret lopa	tki nr 1	– predko	ść minin	nalna		+
b)	1,0	1,1	Мс 1,2	del φ _{T12} 1,3	, _{1,4}	tret łopa 1,5	tki nr 1 · M0	– predko M1	ść minin M2	nalna M3	M4	- M5
b)	1,0	1,1 +	Mo 1,2 +	del φ _{T12} 1,3 +	<u>1,4</u>	tret łopa 1,5	tki nr 1 · M0	– predko M1	ść minin M2	nalna M3	M4	M5
b)	1,0	1,1 +	Mc 1,2 +	del φ_{T12} 1,3 +	<u>,1,4</u> ++	tret łopa 1,5	tki nr 1 · M0	– predko M1 +	ść minin M2 +	nalna M3 +	M4 +	M5
b) cykl 1 cykl 2 cykl 3	1,0	1,1 +	Mc 1,2 +	del φ _{T12} , 1,3 +	<u>1,4</u> ++	tret łopa 1,5	tki nr 1 · M0	– predko M1 +	ść minin M2 +	nalna M3 + +	M4 + +	M5
b) cykl 1 cykl 2 cykl 3 cykl 4	1,0	1,1 + ++	Mc 1,2 +	del φ _{T12} 1,3 + ++	<u>1,4</u> ++	tret łopa 1,5	tki nr 1 · M0	- predko M1 +	ść minin M2 +	nalna M3 + + +	M4 + +	M5
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5	1,0	1,1 + ++	Mc 1,2 +	odel φ _{T12} 1,3 +	<u>1,4</u> ++ ++	tret łopa 1,5	++ M0 +	- predko M1 +	ść minin M2 + +	malna M3 + +	M4 + +	M5
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6	1,0	<u>1,1</u> + ++	Mc 1,2 + ++	odel φ _{T12} 1,3 + ++ ++	<u>1,4</u> ++ ++	tret łopa 1,5 ++	++ M0 +	- predko M1 +	ść minin <u>M2</u> + +	malna M3 + +	M4 + +	+ M5 +++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 7	1,0	1,1 + ++	Mc 1,2 + ++	pdel φ _{T12} 1,3 + ++ ++	<u>1,4</u> ++ ++ +++	tret łopa 1,5	++ M0 +	- predko M1 +	ść minin M2 + +	malna M3 + + +	M4 + + ++	+ M5 ++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 6 cykl 7 cykl 8 cykl 8	1,0	1,1 + ++ ++	Mc 1,2 + ++ ++ ++ ++	bdel φ _{T12} 1,3 + ++ ++ ++	<u>1,4</u> ++ ++ +++	tret lopa 1,5 ++	++ M0 +	- predko M1 +	ść minin M2 + +	malna M3 + + +	M4 + + + ++	++ ++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9	1,0	1,1 + ++ ++ ++	Mc 1,2 + ++ ++ ++ ++ ++	del \$\vert\$_{T12}\$ 1,3 + ++ ++ ++ ++ ++ ++	<u>T01 - p01</u> 1,4 ++ +++ ++ ++	tret lopa 1,5 ++	+++ M0 +	- predko M1 +	ść minin M2 +	nalna M3 + + +	M4 + + ++	++ ++ ++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 10	1,0	1,1 + ++ ++ ++	Mc 1,2 + ++ ++ ++ ++	del φ _{T12} 1,3 + ++ ++ ++	<u>To1</u> – pol <u>1,4</u> ++ +++ +++ + +	tret łopa 1,5 ++	++ + + + +	- predko M1 + +	ść minin M2 + +	nalna M3 + + +	M4 + +	++ ++ ++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 20	1,0	1,1 + ++ ++ ++	Mc 1,2 + ++ ++ ++ ++	del φ _{T12} 1,3 + ++ ++ ++	<u>Tol</u> – pol <u>1,4</u> ++ +++ +++ + + + +	tret łopa 1,5 ++	+ + + +	- predko M1 + +	\$\$ minin M2 + + ++ ++	nalna M3 + + + + + + + + + + +	M4 + +	+++ +++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 20 cykl 30 cykl 30 cykl 30		1,1 + ++ ++ ++ ++	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++	del φ _{T12} 1,3 + ++ ++ ++ ++	- TTO1 - POI 1,4 +++ +++ +++ ++ ++ ++ + + + +	tret łopz 1,5 ++ ++	+ + + + +	- predko M1 + +	ść minin M2 + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + ++	+++ +++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 5 cykl 7 cykl 8 cykl 7 cykl 8 cykl 10 cykl 20 cykl 30 cykl 40 cykl 40	1,0	1,1 + ++ ++ ++ ++ ++	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ _{T12} 1,3 + ++ ++ ++ ++ ++	701 - pol 1,4 ++ +++ +++ ++ ++ ++ + + + +	+++ +++	++ + + + + + + + + + + + + + + + + + +	- predko M1 + +	\$ć minin M2 + + ++ ++	nalna M3 + + + + + + + + + + + + +	M4 + + + + + +++ ++++	+++ +++
b) cykl 1 cykl 2 cykl 3 cykl 3 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 20 cykl 30 cykl 30 cykl 30 cykl 30	1,0	1,1 + ++ ++ ++ ++ ++ ++	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ_{T12} + ++ ++ ++ ++ ++ ++ ++		tret łopa 1,5 ++ ++	++++++++++++++++++++++++++++++++++++++	- predko M1 + + +	ść minin M2 + + + ++ ++	nalna M3 + + + + + + ++ ++	M4 + + + ++ +++ ++++	++ ++ ++ ++
b) cykl 1 cykl 2 cykl 3 cykl 3 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 20 cykl 30 cykl 30 cykl 40 cykl 30 cykl 4 cykl 30 cykl 4 cykl 5 cykl 4 cykl 5 cykl 6 cykl 30 cykl 4 cykl 5 cykl 6 cykl 30 cykl 30 cykl 30 cykl 40 cykl 40 cykl 30 cykl 40 cykl 40 cykl 30 cykl 40 cykl 40 c		1,1 + ++ ++ ++ ++ ++	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ_{T12} 1,3 + ++ ++ ++ ++ ++ ++ ++		tret łopa 1,5 ++ ++	+ + + + + + + + +	- predko M1 + + + +	\$ć minin M2 + + + ++ ++	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + +	+++ +++ ++
b) cykl 1 cykl 2 cykl 3 cykl 3 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 20 cykl 20 cykl 30 cykl 40 cykl 50 cykl 40 cykl 20 cykl 20 cykl 20 cykl 30 cykl 20 cykl 20 cykl 30 cykl 20 cykl 30 cykl 20 cykl 20 cykl 30 cykl 20 cykl 20 cykl 30 cykl 30 cykl 30 cykl 30 cykl 4 cykl 5 cykl 6 cykl 7 cykl 7 cykl 30 cykl 7 cykl 7 cykl 7 cykl 30 cykl 7 cykl 70 cykl 70 cykl 40 cykl 70 cykl		1,1 + ++ ++ ++ ++ + + +	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ _{T12} 1,3 + ++ ++ ++ ++ + + + +	To1 - pol 1,4 ++ ++ +++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	tret łopa 1,5 +++ ++ ++	++ + + + + + + + + + + + + + + + + + +	- predko M1 + + + +	\$ć minin M2 + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + ++ ++ + +	+++ +++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 20 cykl 30 cykl 50 cykl 50 cykl 60 cykl 70 cykl 30 cykl 40 cykl 50 cykl 40 cykl 50 cykl 60 cykl 90 cykl 90		1,1 + +++ ++ + + + + +	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del ϕ_{T12} + + ++ ++ ++ + + + + + +		+++ ++ ++ ++ ++	++ + + + + + + + + + + + + + + + + + +	- predko M1 + + + +	\$\$\$\$ minin M2 + + + + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	+++ +++ ++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 9 cykl 10 cykl 20 cykl 30 cykl 40 cykl 50 cykl 50 cykl 50 cykl 50 cykl 90 cykl 90 cykl 90 cykl 90		1,1 + ++ ++ ++ ++ +	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ _{T12} 1,3 + ++ ++ ++ ++ ++ +++	701 - pol 1,4 ++ +++ +++ ++ ++ + + + + + +	+++ ++ ++ ++ ++ ++	+ + + + + + + + + + +	- predko M1 + + + +	\$ć minin M2 + + ++ ++ ++ ++	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	+++ +++ ++ ++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 5 cykl 7 cykl 7 cykl 8 cykl 10 cykl 20 cykl 30 cykl 30 cykl 50 cykl 50 cykl 50 cykl 50 cykl 80 cykl 80 cykl 100 cykl 100		1,1 + ++ ++ ++ ++ ++ + +	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del ϕ_{T12} + + ++ ++ ++ + + + + + + +		+++ ++ ++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + + + + +	\$ć minin M2 + + + + + + + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	++ ++ ++ ++ ++
b) cykl 1 cykl 2 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 200 cykl 40 cykl 70 cykl 40 cykl 70 cykl 40 cykl 70 cykl 40 cykl 70 cykl 10 cykl 200		1,1 + ++ ++ ++ + + + + + + + +	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ_{T12} 1,3 + ++ ++ ++ ++ ++ + + + + +		tret łopa 1,5 +++ ++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + +	\$ć minin M2 + + + + + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 ++ + + ++ + + + + + + + + + + + + + +	++ ++ ++ ++
b) cykl 1 cykl 2 cykl 3 cykl 3 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 30 cykl 80 cykl 80 cykl 80 cykl 80 cykl 80 cykl 90 cykl 300 cykl 30 cykl 30		1,1 + ++ ++ ++ ++ ++ + + + + + + + + + +	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ_{T12} 1,3 + ++ ++ ++ ++ ++ ++ ++ ++ ++		tret łopa 1,5 ++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + + +	\$ć minin M2 + + + + + + + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	+++ +++ ++ ++ ++
b) cyki 1 cyki 2 cyki 3 cyki 4 cyki 5 cyki 6 cyki 7 cyki 8 cyki 9 cyki 10 cyki 30 cyki 40 cyki 40 cyki 70 cyki 40 cyki 100 cyki 200 cyki 300 cyki 400 cyki 300 cyki 400 cyki 300 cyki 100 cyki 200 cyki 100 cyki 200 cyki 100 cyki 200 cyki 100 cyki 200 cyki 100 cyki 200 cyki 100 cyki 200 cyki 300 cyki 30 cyki 30		1,1 + ++ ++ ++ ++ ++ ++ +++	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ_{T12} 1,3 + ++ ++ ++ ++ ++ ++ ++ +++		tret łopa 1,5 +++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + + + + + + + + + +	\$ć minin M2 + + + + + + + + + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	++ ++ ++ ++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 9 cykl 9 cykl 90 cykl 300 cykl 30 cykl 30		1,1 + ++ ++ ++ ++ ++ +++	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del ϕ_{T12} 1,3 + ++ ++ ++ ++ ++ +++ +++ +++	1 1 1 1 ++ ++ +++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + + + + + +	\$ć minin M2 + + ++ ++ ++ ++ + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	+++ +++ +++ ++ ++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 9 cykl 10 cykl 20 cykl 30 cykl 40 cykl 30 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 500 cykl 400 cykl 500 cykl 400 cykl 500 cykl 500 cyk		1,1 + ++ ++ ++ ++ ++ ++ ++ +++	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del ϕ_{T12} + + ++ ++ ++ + + + + + + +	- pol 1,4 +++ +++ +++ +++ ++ ++ ++ ++ +	+++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + + + + + + + + +	\$ć minin M2 + + + + + + + + + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	++ ++ ++ ++ ++ ++
b) cyki 1 cyki 2 cyki 3 cyki 4 cyki 5 cyki 6 cyki 7 cyki 8 cyki 90 cyki 200 cyki 300 cyki 800 cyki 300 cyki 300 cyki 300 cyki 300 cyki 300 cyki 300 cyki 400 cyki 70 cyki 300 cyki 400 cyki 70 cyki 100 cyki 200 cyki 100 cyki 200 cyki 100 cyki 200 cyki 300 cyki 300 cyki 300 cyki 300 cyki 300 cyki 70 cyki 300 cyki 100 cyki 200 cyki 100 cyki 200 cyki 200 cyki 200 cyki 200 cyki 200 cyki 300 cyki 70 cyki 300 cyki 70 cyki 70 cyki 70 cyki 70 cyki 70 cyki 70 cyki 70 cyki 70 cyki 700 cyki 70 cyki		1,1 + ++ ++ ++ + + + + + + + + + + +	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ_{T12} + + ++ ++ ++ + + + + + + +	- pol 1,4 +++ +++ +++ +++ ++ ++ ++ ++ +	tret łopa 1,5 +++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + + + + + + + + + + +	\$ć minin M2 + + + + + + + + + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	+++ +++ ++ ++ ++
b) cyki 1 cyki 2 cyki 2 cyki 3 cyki 4 cyki 5 cyki 6 cyki 7 cyki 8 cyki 9 cyki 10 cyki 20 cyki 30 cyki 70 cyki 70 cyki 70 cyki 80 cyki 400 cyki 400		1,1 + ++ ++ ++ + + + + + + + + + +	Mc 1,2 + + ++ ++ ++ ++ + + + + + + ++ ++ ++ +	del φ_{T12} 1,3 + ++ ++ ++ ++ + + + + + + +		+++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + + + + + + + + + + +	\$ć minin M2 + + + + + + + + + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	++ ++ ++ ++ ++ ++
b) cykl 1 cykl 2 cykl 3 cykl 3 cykl 5 cykl 6 cykl 7 cykl 80 cykl 10 cykl 20 cykl 30 cykl 40 cykl 70 cykl 80 cykl 80 cykl 900 cykl 500 cykl 100 cykl		1,1 + ++ ++ ++ + + + + + + + + + + + + +	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del φ_{T12} 1,3 + ++ ++ ++ ++ ++ +++ +++ +++	rmi - pol 1,4 ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	tret łopa 1,5 +++ ++ ++ ++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + + + + + + + + + + +	\$ć minin M2 + + + + + + + + + + + + + + + + + +	nalna M3 + + + + + + + + + + + + +	M4 + + + + + + + + + + + + + + + + + + +	++ ++ ++ ++ ++ ++ ++
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 9 cykl 10 cykl 30 cykl 40 cykl 50 cykl 50 cykl 50 cykl 50 cykl 30 cykl 300 cykl 30 cykl 30 cyhl 30 cyhl 30 cyhl 30 cyhl 30 cyhl 30 cyh		1,1 + +++ +++ ++ +++ +++ +++ +++	Mc 1,2 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	del ϕ_{T12} 1,3 + ++ ++ ++ ++ ++ ++ ++ ++ ++	1 1 1 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	tret łopa 1,5 +++ ++ ++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + + + + + + +	- predko M1 + + + + + + + + + + + + + + + + + +	\$\$\circ\$ minin M2 + + + + + + + + + + + + +	nalna M3 +	M4 + + + + + + + + + + + + + + + + + + +	+++ +++ +++ ++ ++ ++ ++

Rys. 9 Portret lopatki nr. 11 a) dla modelu $A^2_{T12,T01}$, b) dla modelu $\varphi_{T12,T01}$.

Premises and the example of parametric method of evaluation... Przesłanki i przykład parametrycznej metody oceny stanu technicznego łopatki...

2)	Model $A^2_{T12,T01}$ – portret łopatki nr l – predkość minimalna											
a)	1,0	1,1	1,2	1,3	1,4	1,5	MO	M1	M2	M3	M4	M5
cykl 1												
cykl 2							+	+				
cykl 3												
cykl 5									+	+	+	
cykl 6												
cykl 7							+	+	+		+	
cykl 8								+	+	+	+	
cykl 9 cykl 10												
cyki 10												
cykl 30												
cykl 40							+	+	+	+	+	
cykl 50							+	+	+	+	+	
cykl 70												
cykl 80												
cykl 90												
cykl 100							+	+	+		+	
cykl 200							+	+	+	+	+	
cykl 400							+	+	+		+	
cykl 500												
cykl 600												
cykl 700 cykl 800							+	+	+		+	
cykl 900												
cykl 1000												
cykl 2000												
1)			Mod	lel o ma	n – nort	ret łonat	kinr 1 –	nredkoś	ć minim	alna		
b)	1.0	1.1	Moc 1.2	lel φ _{T12,1} 1.3	₀₁ – port 1.4	ret lopat	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	M4	M5
b)	1,0	1,1	Moc 1,2	lel φ _{T12,1} 1,3	<u>1,4</u>	ret łopat 1,5	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	M4	M5
b) cykl 1 cykl 2	1,0	1,1	Moc 1,2	lel φ _{T12,1} 1,3	<u>01 – port</u> 1,4 +	ret łopat 1,5	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	M4	M5
b) cykl 1 cykl 2 cykl 3 cykl 3	1,0	1,1	Moc 1,2	lel φ _{T12,1} 1,3	<u>01 – port</u> 1,4 +	ret łopat 1,5	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	M4 +	M5
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5	1,0	1,1	Moc 1,2	lel φ _{T12,T} 1,3	<u>1,4</u>	ret łopat 1,5	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	M4 + +	M5
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6	1,0	1,1 +	Moc 1,2	lel φ _{T12,1} 1,3	<u>01 – port</u> 1,4 +	ret łopat 1,5	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	<u>+</u> +	M5
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7	1,0	<u>1,1</u> + +	Moc 1,2 +	lel φ _{T12,1} 1,3	<u>01 – port</u> 1,4 + +	ret łopat 1,5 ++	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	<u>+</u> +	M5
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8	1,0	+	Moc 1,2 +	del φ _{T12,1} 1,3 +	<u>01 – port</u> 1,4 + +	ret łopat 1,5 ++	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	<u>M4</u> +	M5
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 9 cykl 9	1,0	1,1 + +	Moc 1,2 +	del φ _{T12,1} 1,3 +	<u>01</u> – port 1,4 + +	ret łopat 1,5 ++	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	<u>M4</u> + +	M5 ++
b) cykl 1 cykl 2 cykl 3 cykl 3 cykl 5 cykl 5 cykl 7 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 10 cykl 20	1,0	1,1 + +	Moc 1,2 + +	lel φ _{T12,1} 1,3 +	<u>01</u> – port 1,4 + +	ret łopat 1,5 ++	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	M4 + + +	M5 ++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 5 cykl 7 cykl 7 cykl 8 cykl 7 cykl 10 cykl 20 cykl 30	1,0	1,1 + +	Moc 1,2 + +	lel φ _{T12,1} 1,3 +	<u>01 – port</u> 1,4 + +	ret łopat 1,5 ++ +	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3	M4 + + + +	M5 ++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 7 cykl 8 cykl 9 cykl 10 cykl 20 cykl 30 cykl 30 cykl 40		1,1 + +	Moc 1,2 + +	lel φ _{T12,1} 1,3 +	<u>01 - port</u> 1,4 + +	ret łopat 1,5 ++ +	ki nr 1 – M0	predkoś M1	ć minim M2	alna M3 	M4 + + + +	M5 ++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 7 cykl 8 cykl 9 cykl 10 cykl 20 cykl 20 cykl 30 cykl 40 cykl 50	1,0	+++++	Moc 1,2 + +	tel φ _{T12,T} 1,3 +	<u>01</u> – port 1,4 + + +	ret łopat 1,5 ++ +	ki nr 1	predkoś M1	ć minim M2	alna M3	M4 + + + +	M5 ++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 9 cykl 9 cykl 10 cykl 20 cykl 30 cykl 40 cykl 40 cykl 40 cykl 40 cykl 40 cykl 40 cykl 40 cykl 30 cykl 40 cykl 40 cykl 10 cykl 10	1,0	1,1 + +	Moc 1,2 +	lel φ _{T12,1} 1,3 +	<u>01</u> – port 1,4 + + +	ret łopat 1,5 ++ +	ki nr 1 – M0	predkoś M1 +	ć minim M2	alna M3	M4 + + + + +	M5 ++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 9 cykl 10 cykl 30 cykl 30 cykl 40 cykl 40 cykl 70 cykl 80	1,0	+	Moc 1,2 +	lel φ _{T12,T} 1,3 +	<u>+</u> +	ret łopat 1,5 ++ +	ki nr 1 – M0 +	predkoś MI +	ć minim M2 +	alna M3	M4 + + + +	M5 ++ +
b) cyki 1 cyki 2 cyki 3 cyki 4 cyki 5 cyki 6 cyki 7 cyki 9 cyki 10 cyki 30 cyki 30 cyki 30 cyki 40 cyki 50 cyki 60 cyki 70 cyki 80 cyki 90		+	Moc 1,2 +	lel φ _{T12,T} 1,3 +	+ + +	ret łopat 1,5 ++ +	ki nr 1 – M0 +	predkoś MI +	ć minim M2 +	alna M3	M4 + + + +	M5 ++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 10 cykl 20 cykl 30 cykl 30 cykl 30 cykl 40 cykl 70 cykl 80 cykl 70 cykl 90 cykl 100 cykl 100	1,0	+	Moc 1,2 + +	lel φ _{T12,T} 1,3 + +	<u>+</u> +	ret łopat 1,5 ++ +	ki nr 1 – M0	predkoś MI +	ć minim M2 +	alna M3	M4 + + + +	M5 ++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 9 cykl 10 cykl 30 cykl 40 cykl 30 cykl 60 cykl 70 cykl 60 cykl 70 cykl 90 cykl 30 cykl 300 cykl 30 cykl 30 cyk		+	Moc 1,2 + + +	lel φ _{T12,T} 1,3 + + +	<u>+++</u>	ret łopat 1,5 ++ +	ki nr 1 – M0 +	predkoś MI	ć minim M2 + +	alna M3	M4 + + + + +	M5 +++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 8 cykl 90 cykl 20 cykl 20 cykl 30 cykl 40 cykl 90 cykl 300 cykl		+	Moc 1,2 + + +	lel φ _{T12,T} 1,3 + + + + + +	++++++++++++++++++++++++++++++++++++++	ret łopat 1,5 ++ +	ki nr 1 – M0	predkoś MI 	ć minim M2 + +	alna M3	M4 + + + +	M5 ++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 7 cykl 8 cykl 9 cykl 10 cykl 30 cykl 30 cykl 80 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 300 cykl 300 cykl 300 cykl 300 cykl 300 cykl 300 cykl 500 cykl 500 cykl 300 cykl 300 cykl 500 cykl 500 cykl 300 cykl 500 cykl 500 cykl 300 cykl 500 cykl 500 cykl 300 cykl 500 cykl 5		+ + + + + + + + + + + + + + + + + + + +	Moc 1,2 + +	+ + + + + + +	<u>01</u> - port 1,4 + + + + + +	ret łopat 1,5 ++ +	ki nr 1 – M0	predkoś M1	ć minim M2 + +	alna M3	M4 + + + + + +	M5
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 7 cykl 80 cykl 20 cykl 30 cykl 30 cykl 30 cykl 40 cykl 30 cykl 40 cykl 300 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 40 cykl 40 cy		+++++++++++++++++++++++++++++++++++++++	Moc 1,2 + +	tel φ _{112,1} 1,3 + + + + +	<u>••</u> - port 1,4 + + + + +	ret łopat 1,5 ++ +	ki nr 1 – M0	predkoś M1	ć minim M2 + +	alna M3	M4 + + + + + + +	M5 +++ + + + +
b) cykl 1 cykl 2 cykl 3 cykl 3 cykl 5 cykl 6 cykl 7 cykl 9 cykl 10 cykl 20 cykl 30 cykl 40 cykl 30 cykl 40 cykl 300 cykl		+++++++++++++++++++++++++++++++++++++++	Moc 1,2 + +	lel φ _{T12,1} 1,3 + + +	<u>+</u> + + + +	ret łopat 1,5 ++ +	ki nr 1 – M0 +	predkoś M1 +	ć minim M2 + +	alna M3	M4 + + + + + + + + +	M5 +++ + + + +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 9 cykl 90 cykl 40 cykl 40 cykl 40 cykl 40 cykl 30 cykl 40 cykl 70 cykl 80 cykl 400 cykl 300 cykl 400 cykl 300 cykl 400 cykl 40 cykl 40 cykl 40 cykl 40 c		+ + + + + + + + + + + + + + + + + + + +	Moc 1,2 + +	<pre>lel φ_{T12,1} 1,3 + + + + + + + + + + + + + + + + + + +</pre>	+ + + +	ret łopat 1,5 ++ +	ki nr 1 – M0 +	predkoś MI +	ć minim M2 + +	alna M3 + +	M4 + + + + + + +	M5 +++ +
b) cykl 1 cykl 2 cykl 3 cykl 4 cykl 5 cykl 6 cykl 7 cykl 9 cykl 10 cykl 30 cykl 30 cykl 30 cykl 40 cykl 40 cykl 40 cykl 30 cykl 40 cykl 40 cykl 40 cykl 30 cykl 40 cykl 400 cykl 40 cykl 40		+	Moc 1,2 + +	lel φ _{T12,1} 1,3 + + + + +	+ + + +	ret łopat 1,5 ++ +	ki nr 1 – M0 +	+	ć minim M2 + +	alna M3	M4 + + + + + + + + + +	M5 +++ +

Rys. 10. Portret lopatki nr. 3 a) dla modelu $A^2_{T12,T01}$, b) dla modelu $\varphi_{T12,T01}$.

Na podstawie analizy portretów łopatek nr 1, 11, 3 przedstawionych na rys. 8, 9, 10, stwierdza się, że łopatką najbardziej uszkodzoną jest łopatka nr 1, o wzmożonym zużyciu łopatka nr 11, a słabo zużyta jest łopatka nr 3. Wykonane zdjęcia (rys. 4, 5, 6) i zaobserwowane na nich uszkodzenia zostały potwierdzone portretami tychże łopatek (rys. 8, 9, 10).

7. Wnioski

Metoda monitorowania stanu technicznego łopatki bazuje na modelach diagnostycznych w postaci ilorazu wzmocnień amplitudowych i różnicy przesunięć fazowych sygnału wyjściowego y(t) do sygnału otoczenia x(t) dla czasu obserwacji T_{01} i T_{12} . Metoda ta polega na tym, że czas T_{02} (rys. 7) przemieszczenia się wierzchołka łopatki y(t) w strefie czujnika dzielony jest na dwa przedziały: zbliżanie się wierzchołka łopatki do czujnika T_{01} i oddalanie się wierzchołka łopatki do czujnika T_{12} . Okresy T_{01} i T_{12} obserwacji sygnału y(t) są położone względem siebie tak blisko, że otoczenie x(t) dla tych okresów obserwacji sygnałów y(t) można uważać za identyczne.

Čechą charakterystyczną modeli $A^2_{T12,T01}$ i $\varphi_{T12,T01}$ jest to, że nie wymagają one pomiaru sygnałów otoczenia, chociaż pośrednio jest ono uwzględnione specjalnie zorganizowanymi badaniami diagnostycznymi (dwa okresy obserwacji, wyznaczenie modelu diagnostycznego jako ilorazu modeli diagnostycznych wiążących sygnały diagnostyczne i otoczenia z parametrami stanu technicznego).

Wyniki otrzymane dla modelu $\varphi_{T12,T01}$ zostały porównane z wynikami otrzymanymi dla modelu $A^2_{T12,T01}$. Przedstawione wyniki dla modelu $\varphi_{T12,T01}$ nie różnią się od wyników otrzymanych dla modelu $A^2_{T12,T01}$. Stwierdza się zatem, że istnieją realne możliwości wykorzystywania modeli diagnostycznych do diagnostyki łopatek maszyn wirnikowych w czasie pracy bez konieczności pomiaru sygnału otoczenia. Portrety łopatek wyznaczonych z modeli $A^2_{T12,T01}$ i $\varphi_{T12,T01}$ potwierdzają stan uszkodzeń zarejestrowanych na zdjęciach.

8. Literatura

- [1] Bendat J. S., Piersol A. G. (1976), Metody analizy i pomiaru sygnałów losowych, PWN, Warszawa.
- [2] Bovishanskii K. N. (2000) A metod for continously monitoring the vibrational state of the rotating blades of turbomachines, Thermal engineering (Teploenegetika), Vol 47 No 5, St. Petersburg.
- [3] Dołgolienko G. P. (1984) Lietczyje ispytanija spienialnych ustrojstw i sistiem samolietow i wiertolietow Maszinostrożenije, Moskwa.
- [4] Duan F., Fang Z., Sun Y., Ye S. (2005) Real-time vibration measurement technique based on tip-timing for rotating blades, Opto-Electronic Energineering, 30 (1) 29-31
- [5] von Flotow A., Mercadal H. (2000) Turbine rotor health management with blade-tip sensors, From Laboratory Tool To Fielded System.
- [6] High Cycle Fatigue S & program 1997 Annual Report http://stimet.dtic.mil
- [7] High Cycle Fatigue S & program 1998 Annual Report http://stimet.dtic.mil
- [8] High Cycle Fatigue S & program 1999 Annual Report http://stimet.dtic.mil
- [9] High Cycle Fatigue S & program 2000 Annual Report http://stimet.dtic.mil
- [10] High Cycle Fatigue S & program 2001 Annual Report http://stimet.dtic.mil
- [11] High Cycle Fatigue S & program 2002 Annual Report http://stimet.dtic.mil
- [12] Klein B. (2004) Non-Contact Vibration measurements Turbocharges Turbine and Compressor Blades, Proceedings of 1st EVI-GTI International Conference on Gas Turbine Instrumentation, Barcelona.
- [13] Kotowski A., Lindstedt P. (2007) The using of signals of impulse acoustic response in test of rotor blades in stationary conditions, The International Symposium on Stability Control of Rotating Machinery ISCORMA 4, Calgary Alberta Canada.

Premises and the example of parametric method of evaluation... Przesłanki i przykład parametrycznej metody oceny stanu technicznego lopatki...

- [14] Kurowski W. (1994) Podstawy teoretyczne komputerowego miernictwa systemów mechanicznych, Wyd. Politechniki Białostockiej, Białystok.
- [15] Lindstedt P. (2002) Praktyczna diagnostyka maszyn i jej teoretyczne podstaw, Wyd. Naukowe ASKON, Warszawa.
- [16] Lindstedt P., Grądzki R. (2010) Parametrical models of working rotor machine blade diagnostics with its unmesurable environment elimination, Acta Mechanica et Automatica, 56÷63, Białystok.
- [17] Lindstedt P., Kotowski A. (2004) Basic for innovations In vibroacoustic diagnostics of transport machines rotor blades, The Archives of Transport, Vd XVI. No 4.
- [18] Lindstedt P., Rokicki E., Borowczyk H., Majewski P. (2009) Application of the correlation function and Fourier transformation to evaluation of technical condition demonstrated by blade sof a rotor machine during the operation process, Journal of KONES Powertrain and transport. Vol 16 No 2, Warsaw.
- [19] Lindstedt P., Rokicki E., Borowczyk H., Majewski P. (2009) Rotor blades condition monitoring method based on the elimination of the environment signal, Research Works of AFIT Issve, 15÷24, Warsaw.
- [20] Niederliński A. (1985) Systemy komputerowe automatyki przemysłowej T2 Zastosowania, WNT, Warszawa.
- [21] Roberts J. P. (2007) Comparison of Tip Timing with strain Ganges for rotor blade vibration measurement, Proceedings of lecture series on Tip Timing an Tip Clearnce Problems in Turbomachines von Belgium.
- [22] Skubacziewskij G. S. (1974) Awiacionnyje gazoturbinnyje dwigatieli Maszinostrojenije, Moskwa.
- [23] Szabatin J. (2000) Podstawy teorii sygnałów, WKŁ Warszawa.
- [24] Szczepanik R., Przysowa R. (2004) Wykonanie badań i pomiarów drgań łopatek metodą bezstykową w odwirowni ALSTOM Power w Elblągu, Sprawozdanie ITWL nr 36/3/2004 Warszawa.
- [25] Szczepanik R. (1999) Ocena propagacji pęknięć zmęczeniowych w wirujących łopatkach sprężarki turbinowego silnika lotniczego, Książka Problemy Badań i Eksploatacji Techniki Lotniczej T4, Wyd. ITWL, Warszawa.
- [26] Zieliński M., Ziller G. (2005) Non-contact Blade Vibration Measurement system for aero engine application, 17th International Symposium on Airbreathing Engines, Semptember 4-9 2005 Munich Germany Paper No ISABE - 2005-1220.

Pracę wykonano w ramach pracy własnej nr W/WM/10/2011 realizowanej w Politechnice Białostockiej (kierownik Rafał Grądzki).

Prof. dr hab. inż. Paweł Lindstedt, profesor Politechniki Białostockiej, oraz Instytutu Technicznego Wojsk Lotniczych. Tematyka badawcza: Budowa i Eksploatacja Maszyn, Automatyka Stosowana, Diagnostyka i Niezawodność Maszyn. Prace dotyczą diagnozowania silników lotniczych, układów łożyskowania metodami funkcjonalnymi, wibroakustycznymi i zużyciowymi.

Mgr inż. Rafał Grądzki, doktorant Wydziału Mechanicznego Politechniki Białostockiej. Tematyka badawcza: Budowa i Eksploatacja Maszyn, Diagnostyka i Niezawodność Maszyn. Prace dotyczą diagnozowania silników lotniczych, badania potencjału niezawodności i bezpieczeństwa obiektów technicznych.