PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the building process of ground water intakes under the conditions of natural water resources deficits

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the problems of optimizing and exploiting ground water intakes during times of natural water resource deficits, which are critical sources for the operational resources needed. A deposit of underground water in Rudno in the Lviv region of Ukraine is used for the investigation. To optimize the withdrawal of water for the population in the given district, given the limited natural water resources, and on the bases of a detailed geological, hydrogeological and the hydrological analysis of the area and a review of the literature, a permanent mathematical model for filtration of the chosen deposit was created to evaluate the operational groundwater resources for a long-term period. The model allows for the simulation of water intake exploitation in different operating regimes in order to solve the problems of regulating and optimizing water withdrawal under different conditions of change in the water intakes, expanding productivity depending on the economic needs in the region, and solving problems related to the quality of the drinking water by predicting the possible pollution and depletion of major aquifers during their operation. The model of the Rudno water deposit can be used as a reference when selecting promising sites for new water intakes to reduce material and energy resources during construction.
Rocznik
Tom
Strony
41--50
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Institute of Hydromechanics, NAS of Ukraine, Ukraine
  • Kyiv National University of Construction and Architecture, Ukraine
  • Kyiv National University of Construction and Architecture, Ukraine
  • Kyiv National University of Construction and Architecture, Ukraine
Bibliografia
  • 1.Flörke, M., Schneider, C. & McDonald, R.I. (2018) Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustainability, 1, 51-58.
  • 2.Greve, P., Kahil, T., Mochizuki, J., Schinko, T., Satoh, Y., Burek, P., Fischer, G., Tramberend, S., Burtscher, R., Langan, S. & Wada, Y. (2018) Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustainability, 1, 486-494.
  • 3.Grilli, G., Curtis, J. (2021) Encouraging pro-environmental behaviours: A review of methods and approaches. Renewable and Sustainable Energy Reviews, 135, 110039.
  • 4.Gurskiy, D.S. & Kruglov, S.S. (2007) Tectonic map of Ukraine, scale 1:1000000 with explanatory notes. Kyiv, Ukrainian State Geological Prospecting Institute.
  • 5.He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J. & Bryan, B.A. (2021) Future global urban water scarcity and potential solutions. Nat. Commun., 12, 4667.
  • 6.Khilchevskyi, V.K. (2021) Characteristics of water resources of Ukraine based on the database of the global information system FAO Aquastat. Hydrology, Hydrochemistry and Hydroecology, 1, 6-16.
  • 7.Klobucista, C. & Robinson, K. (2023) Water Stress: A Global Problem That’s Getting Worse. Council on Foreign Relations. https://www.cfr.org/backgrounders (3.04.2023).
  • 8.Kravchenko, M.V., Voloshkina, O.S. & Vasylenko, L.O. (2021) Application of the reverse osmosis method for the purification of drinking water. Environmental Safety and Natural Resources, 40(4), 32-45.
  • 9.Lymarenko, O. (2021) Effect of geothermal energy production on ecological environment in Ukraine. Journal of New Technologies in Environmental Science, 5(1), 46-50.
  • 10.Lis, A. & Savchenko, O. (2022) Possibilities of using the energy potential of geothermal waters in the case of Poland and Ukraine. Construction of Optimized Energy Potential, 11, 181-194.
  • 11.Ljuta, N.G. & Ljutyi, G.G. (2016) Some features in changing of the ground waters quality during of the operation process in Lviv region intakes. Proceedings of International Geologic Forum. Actual problems and perspectives of geology development: science and industry. Kyiv, UkrSGRI, 22-32.
  • 12.Qi, S., Hou, D. & Luo, J. (2017) Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model. Journal of Hydrology, 552, 505-515.
  • 13.Redko, A., Kulikova, N., Ujma, A., Redko, O., Burda, Y., Pivnenko, Y. & Kompan, A. (2021) Rational parameters of a hybrid geothermal power plant based on Flash/ORC cycles. Construction of Optimized Energy Potential, 10(1), 127-133.
  • 14.Sampathkumar, K.M., Ramasamy, S., Ramasubbu, B., Karuppanan, S., & Lakshminarayanan, B. (2021) Hybrid optimization model for conjunctive use of surface and groundwater resourcesin water deficit irrigation system. Water Science & Technology, 84(10-11), 3055-3071.
  • 15.Shestopalov, V.M., Blinov, P.V. & Ljutyi, G.G. (2010). Hydrogeological division into districs of Ukraine territory. Proceedings of scientific-practical seminar. Results of the work execution with the forecast valuation of the ground waters resources. Kyiv, 3-8.
  • 16.Shurchkova, Yu.A. (2019) Resource base for the development of geothermal energy in Ukraine. The Problems of General Energy, 3(58), 24-29.
  • 17.Smuszkiewicz, M., Zdechlik, R. (2018) GIS as a supporting tool for constructing groundwater flow models. Conference Paper of 18th International Multidisciplinary Scientific GeoConference. Sofia, SGEM.
  • 18.Telyma, S.V. (2003) System approach to the estimation of the technogenic impact of groundwater intakes on the ecological condition of the adjoining territories. Ecology and Resources, 16, 118-123.
  • 19.Telyma, S.V. (2021) Transformation of the water and mass exchange on the Shatsk National Natural Park territory under the influence of climatic and anthropogenic factors. In: Climate change and sustainable development: new challenges of the century. Mykolaiv-Rzeszow, PMBSNU, 431-441.
  • 20.Tokmajyan, H.V., Margaryan, A.Y., Mikayelyan, A.R. & Mkrtchyan, S.H. (2022) A method of using wastewater run-off from fish farms having no multi-use hydrosystem with water cleaning technologies, Construction of Optimized Energy Potential, 10, 155-161.
  • 21.Wu, M., Wang, L., Xu, J., Wang, Z., Hu, P. & Tang, H. (2022) Multiobjective ensemble surrogatebased optimization algorithm for groundwater optimization designs. Journal of Hydrology, 612, 128159.
  • 22.Yara, O., Uliutina, O., Golovko, L., Andrushchenko L. (2018) The EU Water Framework Directive: Challenges and prospects for implementation in Ukraine. European Journal of Sustainable Development, 7(2), 175-182.
  • 23.Yeh, H., Wang, R., Feng, Q., Young, Ch-Ch. & Arnold, J.G. (2018) Input uncertainty on watershed modeling. Ecological Engineering, 12(15), 16-26.
  • 24.Yurkevych, Y., Savchenko, O. & Savchenko, Z. (2022) Prospects for development of geothermal energy in Lviv Region. Energy Engineering and Control Systems, 8(1), 1-6.
  • 25.Zajats, X. (2013) The deep structure of the West region of Ukraine on the base of the seismic investigations and the ways of the sources works on the oil and gas. Lviv, Сentr Evropy.
  • 26.Zatserkovnyi, V.I., Burachek, V.H., Zhelezniak, O.O. & Tereshchenko, A.O. (2017) Geoinformation systems and data bases. Nizhyn, NSU.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0dea63d1-099c-409b-b2bd-21cdb54bf4c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.