PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of accelerated aging on selected mechanical properties of polypropylene with organic fillers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ przyspieszonego starzenia na wybrane właściwości mechaniczne polipropylenu z napełniaczami organicznymi
Języki publikacji
EN
Abstrakty
EN
The aging effect in water atthe temperature of 100±2°C on selected mechanical properties of polypropylene with organic fillers (hemp chaff, a mixture of oak, birch and maple leaves) was investigated. A significant influence of the aging process on the impact strength and elongation at break was observed. The degradation processes were also visible on the surface of the samples.
PL
Zbadano wpływ starzenia w wodzie w temperaturze 100±2°C na wybrane właściwości mechaniczne polipropylenu z napełniaczami organicznymi (plewy konopne, mieszanina liści dębu, brzozy i klonu). Stwierdzono istotny wpływ procesu starzenia na udarność i wydłużenie względne przy zerwaniu. Procesy degradacji widoczne były również na powierzchni próbek.
Czasopismo
Rocznik
Strony
308--316
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Theoretical and Applied Mechanics, Konarskiego 18A, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Theoretical and Applied Mechanics, Konarskiego 18A, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, M. Skłodowskiej-Curie 55, 87-100 Toruń, Poland
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Theoretical and Applied Mechanics, Konarskiego 18A, 44-100 Gliwice, Poland.
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Theoretical and Applied Mechanics, Konarskiego 18A, 44-100 Gliwice, Poland.
Bibliografia
  • [1] Edebali S: “15 - Methods of engineering of biopolymers and biocomposites” in “Advanced Green Materials: Fabrication, Characterization and Applications of Biopolymers and Biocomposites”, (editor Shakeel A.), Woodhead Publishing, Sawston 2021, p. 351. https://doi.org/10.1016/B978-0-12-819988-6.00015-X
  • [2] Thakre R.A., Baxi R.N., Shelke R.S. et al.: International Journal of Research in Engineering, IT and Social Sciences 2018, 8(12), 2018, 56.
  • [3] La Mantia F.P., Morreale M., Mohd I.Z.A.: Journal of Applied Polymer Science 2005, 96(83), 1906. https://doi.org/10.1002/app.21623
  • [4] Coutinho F.M.B., Costa T.H.S., Suarez J.C.M. et al: Polymer Testing 2000, 19(6), 625. https://doi.org/10.1016/S0142-9418(99)00034-3
  • [5] Ichazo M.N., Albano C., González J. et al.: Composite Structures 2001, 54(2-3), 207. https://doi.org/10.1016/S0263-8223(01)00089-7
  • [6] Liber-Kneć A., Kuciel S., Dziadur W.: Polimery 2006, 51(7-8), 571. https://doi.org/10.14314/polimery.2006.571
  • [7] Bazan P., Salasińska K., Kuciel S.: Industrial Crops and Products 2021, 164, 113356. https://doi.org/10.1016/j.indcrop.2021.113356
  • [8] Dobrzyńska-Mizera M., Barczewski M.: Przetwórstwo Tworzyw 2014, 5(161), 399.
  • [9] Sathish T., Palani K., Natrayan L. et al.: International Journal of Polymer Science 2021, 2021, 8. https://doi.org/10.1155/2021/2462873
  • [10] Kijeński J., Kijeńska M., Osazuwa O.: Polimery 2016, 7–8(61), 465. https://doi.org/10.14314/polimery.2016.467
  • [11] Gelfuso M.V., da Silva P.V.G., Thomazini D.: Materials Research 2011, 14(3), 360. https://doi.org/10.1590/S1516-14392011005000056
  • [12] Barczewski M., Andrzejewski J., Majchrowski R. et al.: Journal of Renewable Materials 2021, 9(5), 841. https://doi.org/10.32604/jrm.2021.014490
  • [13] Kuciel S., Liber-Kneć A., Zajchowski S.: Polimery 2010, 55, 718. https://doi.org/10.14314/polimery.2010.718
  • [14] Rahman A., Fehrenbach J., Ulven Ch. et al.: Industrial Crops and Products 2021, 172, 114028. https://doi.org/10.1016/j.indcrop.2021.114028
  • [15] Umoren S.A., Solomon M.M.: “Polypropylene (PP)/Starch-Based Biocomposites and Bionanocomposites” in “Polypropylene-Based Biocomposites and Bionanocomposites”, (editor Visakh P.M., Solomon M.M.), John Wiley & Sons, Hoboken, 2017, p. 55. https://doi.org/10.1002/9781119283621.ch3
  • [16] Fuqua M.A., Huo S., Ulven C.: Polymer Reviews 2012, 52(3), 259. https://doi.org/10.1080/15583724.2012.705409
  • [17] Samujło B.A.: Advances in Science and Technology Research Journal 2020, 14(4), 139. https://doi.org/10.12913/22998624/126971
  • [18] White J.R.: Comptes Rendus Chimie 2006, 9(11-12), 1396. https://doi.org/10.1016/j.crci.2006.07.008
  • [19] Holliday L.: “Composites materials”, Elsevier, 1966.
  • [20] Rod M.: “Ageing of Composites”, Woodhead Publishing, Cambridge, 2008.
  • [21] Broughton W.R., Maxwell A.S.: “Accelerated Environmental Ageing of Polymeric Materials”, National Physical Laboratory, Middlesex, 2007.
  • [22] Brzozowska-Stanuch A., Rabiej S., Stanuch W.: Czasopismo Techniczne. Mechanika 2009, R.106, 43.
  • [23] Hedir A., Slimani F., Moudoud M., Lamrous O., Diaham S.: “Thermal ageing effects on polypropylene properties” Materials from 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Richland, WA, USA, October 20 –23, 2019, p. 130.
  • [24] Fiebig J., Gahleitner M., Paulik C. et al.: Polymer Testing 1999, 18(4), 257. https://doi.org/10.1016/S0142-9418(98)00023-3
  • [25] Krzyżak A., Prażmo J., Kucharczyk W.: Advanced Materials Research 2014, 1001, 141 Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/amr.1001.141
  • [26] Samujło B.A.: Advances in Science and Technology Research Journal 2020, 14(4), 139. https://doi.org/10.12913/22998624/126971
  • [27] Fotopoulou K.N., Karapanagioti H.K.: “Degradation of Various Plastics in the Environment” in “Hazardous Chemicals Associated with Plastics in the Marine Environment”, Volume 78, (editor Takada H., Karapanagioti H.), Springer, Cham, 2017, p. 71. https://doi.org/10.1007/698_2017_11
  • [28] Mannheim V., Simenfalvi Z.: Polymers 2020, 12(9), 1901. https://doi.org/10.3390/polym12091901
  • [29] Moretti C., Junginger M., Shen L.: Conservation and Recycling 2020, 157, 104750. https://doi.org/10.1016/j.resconrec.2020.104750
  • [30] Hofmann T., Visi-Rajczi E., Levente L.: Current Bioactive Compounds 2022, 18(1), 14. https://dx.doi.org/10.2174/1573407217666210215090330
  • [31] Rocha-Guzmán N.E., González-Laredo R.F., Vázquez-Cabral B.D. et al.: “11- Oak Leaves as a New Potential Source for Functional Beverages: Their Antioxidant Capacity and Monomer Flavonoid Composition” in “Functional and Medicinal Beverages”, Volume 11, (editor Grumezescu A.M., Holban A.M.), Academic Press, Cambridge, 2019, p. 381. https://doi.org/10.1016/B978-0-12-816397-9.00011-X
  • [32] Oksanen E., Riikonen J., Kaakinen S. et al.: Global Change Biology 2005, 11(5), 732. https://doi.org/10.1111/j.1365-2486.2005.00938.x
  • [33] Prasad R.B.N., Gülz P.G.: Zeitschrift für Naturforschung C 1990, 45, 81. https://doi.org/10.1515/znc-1990-7-811
  • [34] Liu M., Thygesen A., Summerscales J. et al: Industrial Crops and Products 2017, 108, 660, https://doi.org/10.1016/j.indcrop.2017.07.027
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikator YADDA
bwmeta1.element.baztech-0dd6ae55-8685-4b3d-b949-b110e4de933e