PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Use of InSAR in Linear Discontinuous Ground Deformation Generation analysis: case study of a mine in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Linear Discontinuous Ground Deformations are defined as fissures and steps, as well as structural forms composed of them. They occur on the surface as a result of underground mining. Knowledge of LDGDs has been acquired through field observations which are subsequently described in the scientific publication. Records of LDGDs are made by using the classic surveying method. The paper reviews the created LDGDs in the years 2015-2019 in one of the mines of the USCB. The analysis covers the velocity of subsidence as a result of underground mining and the values of horizontal strains determined according to the Knothe-Budryk theory. The InSAR satellite technique was used to measure the subsidence. The subsidence was determined using the small baseline method - SBAS. The combination of the theoretical Knothe-Budryk model with the large-scale capabilities of InSAR may provide valuable material for a better understanding of the genesis of LDGD creation and their prediction.
Rocznik
Strony
45--53
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Central Mining Institute, Department of Geology, Geophysics and Surface Protection, Katowice, Poland
Bibliografia
  • [1] Kowalski A. Deformacje powierzchni na terenach górniczych kopalń węgla kamiennego. Katowice: Central Mining Institute; 2020.
  • [2] Whittaker DN, Reddish DJ. Subsidence, occurrence, prediction and control. Amsterdam e Oxford e New York e Tokyo: Elsevier; 1989.
  • [3] Kratzsch H. Bergschädenkunde. Deotscher Markscheider - verein e.v. Bochum. 1997.
  • [4] Klenczar T. Szkody górnicze. Stowarzyszenie mierniczych górniczych R. P. Katowice. 1939.
  • [5] Strzałkowski P, Szafulera K. Occurrence of linear discontinuous deformations in Upper Silesia (Poland) in conditions of intensive mining extraction - case study. Energies 2020;13(8): 1-16. https://doi.org/10.3390/en13081897.
  • [6] Kowalski A, Apanowicz B, Polanin P. New research on a case of linear discontinuous ground deformation (LDGD). J Sustain Min 2020;19(3):201-2011. https://doi.org/10.46873/2300-3960.1018.
  • [7] Grün E. Analyse und Prognose von Unsteitigkeiten als Folge bergbaubedingter Bodenbewegungen im linksniederrheinischen Steinkohlengebiet. Dissertation. RWTH Aachen; 1995.
  • [8] Kowalski A, Jędrzejec E, Gruchlik P. Linear discontinuous deformations of the surface in the upper silesian Coal Basin. Arch Min Sci 2010;55(2):331-46.
  • [9] Wen-Bing G, Er-Hu B, Da-Ming Y. High-intensity mining characteristics and its evaluation system of thick coal seam in China's coalmines. Transac Strata Mech Res Inst 2018;20(2): 147-58.
  • [10] Zhu H, He F, Zhang S, Yang Z. An integrated treatment technology for ground fissures of shallow coal seam mining in the mountainous area of south western China: a typical case study. Miner Res Manag 2018;34(1):119-38.
  • [11] Ferretti A. Satellite InSAR data: reservoir monitoring from Space. EAGE. Houten; 2014.
  • [12] Perski Z, Mróz M. Zastosowanie metod interferometrii radarowej InSAR do badania naturalnych ruchów powierzchni terenu w Polsce. Arch Fotogram Karto Teledet 2007;17b:613-24.
  • [13] Beladam O, Balz T, Mohamadi B, Abdalhak M. Using PSInSAR with sentinel-1 images for deformation of monitoring in northeast Algeria. Geosciences 2019;9:315.
  • [14] Wu Q, Jia C, Chen S, Li H. SBAS e InSAR based deformation detection of urban land, created from mega-scale mountain excavation and valley filling in the loess plateau: the case study of Yan’an City. Rem Sens 2019;11:1673.
  • [15] Zhang S, Chen B, Gong H, Lei K, Shi M, Zhou C. Three-dimensional surface displacement of the eastern Beijing Plain, China, using ascending and descending Sentinel-1AB images and leveling data. Rem Sens 2021;13:2809.
  • [16] Chaabani C, Chini M, Abdelfattah R, Hostache R, Chokmani K. Flood mapping in a complex environment using bistatic TanDEM-X/TerraSAR-X InSAR coherence. Rem Sens 2018;10(12):1873.
  • [17] Suresh D, Yarrakula K. InSAR based deformation mapping of earthquake using Sentinel 1A imagery. Geocarto Int 2019; 35:559-68.
  • [18] Atzori S, Antonioli A, Tolomei C, De Novellis V, De Luca C, Monterroso F. InSAR full e resolution analysis of the 2017 e 2018 M>6 earthquakes in Mexico. Rem Sens Environ 2019: 234.
  • [19] Hay-Man NA, Ge L, Yan Y, Li X, Chang HC, Zhang K, et al. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia. Eng Geol 2010;115:1-15.
  • [20] Chen B, Mei H, Li Z, Wang Z, Yu Y, Yu H. Retrieving three-dimensional large surface displacement in coal mining areas by combining SAR Pixel Offset measurements with an improved mining subsidence model. Rem Sens 2021; 13:2541.
  • [21] Przyłucka M, Graniczny M. Kompleksowe wykorzystanie przetworzeń DInSAR i PSInSAR w badaniu pionowych przemieszczeń terenu w wybranych rejonach GO. Przeglad Gorn 2015;3:80-8.
  • [22] Malinowska A, Witkowski W, Hejmanowski R, Chang L, Van Leijen F, Hanssen R. Sinkhole occurrence monitoring over shallow abandoned coal mines with satellite-based persistent scatterer interferometry. Eng Geol 2019;262:1-13.
  • [23] Milczarek W, Blachowski J, Grzempowski PK. Application of PSInSAR for assessment of surface deformations in post-mining area e case study of the former Walbrzych hard coal basin (SW Poland). Acta Geodyn Geomater 2017;1:41-52.
  • [24] Apanowicz B. Linear discontinuous ground deformation detection based on coherence analysis of pre and post event radar image pairs. J Appl Geodes 2021. online publication. https://doi.org/10.1515/jag-2021-0036.
  • [25] Knothe S. Równanie profilu ostatecznie wykształconej niecki osiadania. Arch Gorn Hut 1953;1(1):22-38.
  • [26] Knothe S. Prognozowanie wpływów eksploatacji górniczej. Śląsk. Katowice; 1984.
  • [27] Berardino P, Fornaro G, Lanari R, Sansosti E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Rem Sens 2002;40(11).
  • [28] Goldstein RM, Zebker H, Werner CL. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci 1988;23(4):713-20.
  • [29] Sandwell D, Mellors R, Tong X, Wei M, Wessel P. Open radar interferometry software for mapping surface deformation. Eos Trans 2011;92(28).
  • [30] Jędrzejec E. 32-bitowa aplikacja Szkody 4.0 do prognozowania poeksploatacyjnych deformacji górotworu. Konferencja nt. Problemy ochrony terenów górniczych. Prace Naukowe GIG 2002;41:193-200.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0dd503fb-fd59-4200-9dfd-e086e04c31f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.