PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation of selected parameters of the shield support base dedicated for the condition of a weak floor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In longwall coal exploitation, problems with the proper functioning of the powered shield support often occur. In many cases, it results from the insufficient load-bearing capacity of the ground (floor) and the inability to achieve the set or yield pressure of the shield support. The improper functioning of the shield support may also result from its construction and the lack of optimisation to work effectively on a weak mine floor. This paper presents an attempt to optimise the operating conditions of the base of two-legged shield support based on the field observations and results of the PFC3D numerical calculation. In the framework of the numerical calculations, the impact of the width of the base and the location of the hydraulic legs on the working conditions of shield support on a weak floor were analysed.
Rocznik
Strony
509--529
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab., wykr.
Twórcy
  • Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
autor
  • DMT GMBH, Germany
Bibliografia
  • [1] S. Prusek, S. Płonka, A. Walentek, Applying the ground reaction curve concept to the assessment of shield support performance in longwall faces. Arabian Journal of Geosciences 9 (3), p. 1-16 (2016). DOI: https://doi.org/10.1007/s12517-015-2171-2.
  • [2] S. Rajwa, The influence of the geometrical construction of the powered roof support on the loss of a longwall working stability based on the practical experience. Arch. Min. Sci. 65 (3), 511-529 (2020). DOI: https://doi.org/10.24425/ams.2020.134132.
  • [3] W. Masny, Powered support in dynamic load conditions – numerical analysis. Arch. Min. Sci. 65 (3), 453-468 (2020). DOI: https://doi.org/10.24425/ams.2020.134129.
  • [4] S. Rajwa, The impact of floor load-bearing capacity on the roof condition in the longwall face. Przegląd Górniczy 10, 44-50 (2016).
  • [5] S. Rajwa, T. Janoszek, S. Prusek, Influence of canopy ratio of powered roof support on longwall working stability – A case study, International Journal of Mining Science and Technology 29 (4), 591-598 (2019). DOI: https://doi.org/10.1016/j.ijmst.2019.06.002.
  • [6] S. Rajwa, T. Janoszek, S. Prusek, Model tests of the effect of active roof support on the working stability of a long wall. Computers and Geotechnics 118, 103303 (2020). DOI: https://doi.org/10.1016/j.compgeo.2019.103302.
  • [7] J. Świątek, T. Janoszek, T. Cichy, K. Stoiński, Computational Fluid Dynamics Simulations for Investigation of the Damage Causes in Safety Elements of Powered Roof Supports – A Case Study. Energies 14 (4), 1027 (2021). DOI: https://doi.org/10.3390/en14041027.
  • [8] P.M.V. Nguyen, T. Olczak, S. Rajwa, An investigation of longwall failure using 3D numerical modelling – A case study at a copper mine. Studia Geotechnica et Mechanica. 43 (4), 389-410 (2021). DOI: https://doi.org/10.2478/sgem-2021-0019.
  • [9] K. Terzaghi, R.B. Peck, G. Mesli, Soil Mechanics In Engineering Practice, 3rd Edition, John Wiley & Sons, Inc (1996).
  • [10] D. Kumar, S.K. Das, An experimental study of the parameters influencing ultimate bearing strength of weak floor strata using physical modelling. Geotechnical and Geological Engineering 23 (1), 1-15 (2005). DOI: https://doi.org/10.1007/s10706-003-3158-4.
  • [11] M.M. Gadde, S.S. Peng, Weak Floor Stability During Perimeter Mining in the Illinois Basin Coal Mines. 28th International Conference on Ground Control in Mining, Morgantown, USA, 1-10 (2009).
  • [12] S. Rajwa, W. Masny, S. Prusek, Powered Support in Conditions of Rock Mass Tremor Occurrence in the Polish Coal Mining. Aachen International Mining Symposium. 5th International Symposium – High Performance Mining (2009).
  • [13] R. Frith, A holistic examination of the geotechnical design of longwall shields and associated mining risks. In: Proceedings of the 13th Coal Operators’ Conference, 38-49 (2013).
  • [14] S.S. Peng, Longwall Mining. 2nd Edition, Morgantown (2006).
  • [15] M. Witek, Influence of rock strength parameters of floor on working conditions of powered roof support in the longwall face. PhD Thesis, Główny Instytut Górnictwa, Poland (2014).
  • [16] S. Prusek, S. Rajwa, A. Wrana, A. Krzemień, Assessment of roof fall risk in longwall coal mines. International Journal of Mining, Reclamation and Environment 31 (8), 558-574 (2016). DOI: https://doi.org/10.1080/17480930.2016.1200897.
  • [17] C. Faria Santos, Z.T. Bieniawski, Floor Design In Underground Coal Mines. Rock Mechanics and Rock Engineering 22, 249-271 (1989). DOI: https://doi.org/10.1007/BF01262282.
  • [18] R. Seedsman, The strength of the pillar-floor system. 12th Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy 97-107 (2012).
  • [19] M. Borecki, A. Kidybiński, Load capacity of the floor in coal seams. Przegląd Górniczy 3 (1964) (in Polish).
  • [20] A. Barry, O.B. Nair, In Situ Testes of Bearing Capacity of Roof and Floor in Selected Bituminous Coal Mines. RI 7406 (1970).
  • [21] D.W.H Su, R.O. Sceandrol, G. Hasenfus, Development and Evaluation of a Floor-Bearing Capacity Test Apparatus, 12nd Int. Conf. on Ground Control in Mining, 357-365 (1993).
  • [22] A. Afrouz, Field and Bering Capacity of Coal Mine Floor. Int. J. Rock Mech. Min. Sci & Geomech. 12, 241-253 (1975).
  • [23] G. Chen, Y.P. Chuch, Estimation of in situ viscoelastic parameters of weak floor strata by plate-loading testes. Geotechnical and Geological Engineering 14, 151-167 (1996).
  • [24] L. Prandl, Über die Härte plastischer Körper. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse 1, 74-85 (1920).
  • [25] M. Hjiaj, A.V. Lyamin, S.W. Sloan, Bearing capacity of a cohesive-frictional soil under non-eccentric inclined loading. Computers and Geotechnics 31 (6), 491-516 (2004). DOI: https://doi.org/10.1016/j.compgeo.2004.06.001.
  • [26] M. Hjiaj, A.V. Lyamin, S.W. Sloan, Numerical limit analysis solutions for the bearing capacity factor. International Journal of Solids and Structures 42 (5-6), 1681-1704 (2005). DOI: https://doi.org/10.1016/j.ijsolstr.2004.08.002.
  • [27] Z. Wiłun, Outline of geotechnics. Wydawnictwa Komunikacji i Łączności WKŁ, Warszawa, Poland (2005).
  • [28] J.A. Nemcik, Floor failure mechanisms at underground longwall face. University of Wollongong (2003).
  • [29] P. Małkowski, A. Ulaszek, Ł. Ostrowski, Optimization of roof coal thickness in the roof of longwall face as a result of water inflow into roof rocks. Przegląd Górniczy 3, 48-57 (2014).
  • [30] J. Markowicz, S. Rajwa, S. Szewda, Modelling of Powered Roof Support Cooperation with the Floor of Low Bearning Capacity in the Aspect of Shaping the Section Design. Archives of Mining Sciences 62 (1), 177-188 (2017). DOI: https://doi.org/10.1515/amsc-2017-0013.
  • [31] PFC3D, User Manual. Itasca Consulting Group, Minneapolis, MN, USA.
  • [32] GEOSOFT, Geomechanics and control of soft mine floors and sides. Project co-financed by Research Fund for Coal & Steel. Project no. RFCR-CT-2010-00001, realization in 2010-2013 (not published).
  • [33] S. Prusek, S. Rajwa, W. Kasperkiewicz, T. Budniok, Assessment of performance of powered shield support used on weak floor. Word Mining Congress (2013).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0db97ad1-5dcb-4c00-b616-f7470cb12a94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.