Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The integration of nanomaterials and industrial waste into electromagnetic interference (EMI) shielding composites represents a promising pathway towards sustainable and efficient solutions for modern infrastructure challenges. This paper discusses how these materials are improving, focusing on the nanoparticles and recycled industrial waste that enable them to improve the EMI shielding. Furthermore, the critical applications of EMI shielding composites such as telecommunications, defense, and electronics are elaborated. The mechanical and microstructure properties of cement concrete and mortar based EMI composites are explained in detail. The paper also examines the challenges of producing these materials on a bigger scale and at a reduced cost, as well as the possibilities for future developments. Eventually, this work contributes to the development of high-performing EMI composites that is developed using ecologically friendly materials by minimizing waste which supports sustainable construction.
Wydawca
Rocznik
Tom
Strony
65--90
Opis fizyczny
Bibliogr. 111 poz., fig., tab.
Twórcy
autor
- School of Civil Engineering, Vellore Institute of Technology, Chennai- Campus, Chennai 600127, India
autor
- School of Civil Engineering, Vellore Institute of Technology, Chennai- Campus, Chennai 600127, India
Bibliografia
- 1. Srivastava S.K and Manna K. Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: a review. J. Mater. Chem. A. 2022; 10(14): 7431–7496, doi: 10.1039/D1TA09522F.
- 2. Mikinka E., Siwak M. Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites—a topical review. J. Mater. Sci. Mater. Electron., 2021; 32(20): 24585–24643. doi: 10.1007/s10854-021-06900-8.
- 3. Kausar A., Ahmad I. Conducting polymer nanocomposites for electromagnetic interference shielding—radical developments. J. Compos. Sci., 2023; 7(6): 240. doi: 10.3390/jcs7060240.
- 4. Cheng J. et al. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett., 2022; 14(1): 80. doi: 10.1007/s40820-022-00823-7.
- 5. Ji J., et al. Structural application of engineered cementitious composites (ECC): A state-of-the-art review. Constr. Build. Mater., 2023; 406: 133289, doi: 10.1016/j.conbuildmat.2023.133289.
- 6. Li V.C. Large volume, high‐performance applications of fibers in civil engineering. J. Appl. Polym. Sci., 2002; 83(3): 660–686, doi: 10.1002/ap2263.
- 7. L. Omana et al. Recent advances in polymer nanocomposites for electromagnetic interference shielding: A review. ACS Omega 2022; 7(30): 25921–25947. doi: 10.1021/acsomega.2c02504.
- 8. Fulham-Lebrasseur R., Sorelli L., Conciatori D. Development of electrically conductive concrete and mortars with hybrid conductive inclusions. Constr. Build. Mater., 2020; 237, 117470, doi: 10.1016/j.conbuildmat.2019.117470.
- 9. El-Dieb A.S., El-Ghareeb M.A., Abdel-Rahman M.A.H., Nasr E.S.A. Multifunctional electrically conductive concrete using different fillers. J. Build. Eng., 2018; 15: 61–69. doi: 10.1016/j.jobe.2017.10.012.
- 10. Wang X.-Y., et al. Electromagnetic interference shielding materials: recent progress, structure design, and future perspective. J. Mater. Chem. C, 2022; 10(1): 44–72. doi: 10.1039/D1TC04702G.
- 11. Jia X., Li Y., Shen B., Zheng W. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review. Compos. Part B Eng., 2022; 233: 109652. doi: 10.1016/j.compositesb.2022.109652.
- 12. Gao X., Li W., Wang, Y. Lu, J. Zhou, X.Q. Wang. Advancing energy solutions: Carbon-based cementitious composites in energy storage and harvesting. J. Build. Eng., 2024; 91, 109720. doi: 10.1016/j.jobe.2024.109720.
- 13. Vafaeva K.M., Zegait R. Carbon nanotubes: revolutionizing construction materials for a sustainable future: A review. Res. Eng. Struct. Mater., 2023, doi: 10.17515/resm2023.42ma0818rv.
- 14. Jiang X., Lu D., Yin B., Leng Z. Advancing carbon nanomaterials-engineered self-sensing cement composites for structural health monitoring: A state-of-the-art review. J. Build. Eng., 2024; 87, 109129. doi: 10.1016/j.jobe.2024.109129.
- 15. Tiong M. et al. A review on cementitious composite incorporating carbon nanomaterials: The self-sensing functionality as an implication for geological CO2 storage monitoring. Geoenergy Sci. Eng., 2024; 240: 212997. doi: 10.1016/j.geoen.2024.212997.
- 16. Bhatrola K., Maurya S.K., Kothiyal N.C. An updated review on scientometric analysis and physico-mechanical performance of nanomaterials in cementitious composites. Structures 2023; 58, 105421. doi: 10.1016/j.istruc.2023.105421.
- 17. Ryłko-Polak I., Komala W., Białowiec A. The reuse of biomass and industrial waste in biocomposite construction materials for decreasing natural resource use and mitigating the environmental impact of the construction industry: A review. Materials (Basel)., 2022; 15(12), 4078, doi: 10.3390/ma15124078.
- 18. Mohanty I., Saha S., Patra R., Jha S.K. Waste to valuable resource: application of copper slag and steel slag in concrete with reduced carbon dioxide emissions. Innov. Infrastruct. Solut., 2023; 8(4): 122. doi: 10.1007/s41062-023-01090-0.
- 19. Dananjaya S.A.V., Chevali V.S., Dear J., Potluri, Abeykoon C. 3D printing of biodegradable polymers and their composites – Current state-of-the-art, properties, applications, and machine learning for potential future applications. Prog. Mater. Sci., 2024; 146, 101336, doi: 10.1016/j.pmatsci.2024.101336.
- 20. Parveen S., Rana S., and Fangueiro R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomater., 2013; 1. doi: 10.1155/2013/710175.
- 21. Sabet M. Advanced developments in carbon nanotube polymer composites for structural applications. Iran. Polym. J., Nov. 2024. doi: 10.1007/s13726-024-01419-1.
- 22. Sutkowska M., Stefańska A., Vaverkova M.D., Dixit S., Thakur A. Recent advances in prefabrication techniques for biobased materials towards a low-carbon future: From modules to sustainability. J. Build. Eng., 2024; 91: 109558. doi: 10.1016/j.jobe.2024.109558.
- 23. Xia Y., Gao W., Gao C. A review on graphene‐based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater., 2022; 32(42). doi: 10.1002/adfm.202204591.
- 24. Clegg F.M. et al. Building science and radiofrequency radiation: What makes smart and healthy buildings. Build. Environ., 2020; 176, 106324. doi: 10.1016/j.buildenv.2019.106324.
- 25. Hamamah F., Ahmad W.W., Gomes C., Isa, M.M., Homam M. Concerns on the risk of Malaysian civil and defense systems due to intentional electromagnetic interference. IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), IEEE, 2019; 1–6. doi: 10.1109/APACE47377.2019.9021096.
- 26. Rao L. et al. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low‐frequency electromagnetic wave absorption. Adv. Funct. Mater 2023., 33(16). doi: 10.1002/adfm.202213258.
- 27. Lv H., J. Cui, B. Li, M. Yuan, J. Liu, and R. Che. Insights into civilian electromagnetic absorption materials: challenges and innovative solutions. Adv. Funct. Mater., 2024. doi: 10.1002/adfm.202315722.
- 28. Girman M., Reyes M., and Zhou C. An overview of existing EMI standards applicable to mining. Mining, Metall. Explor., 2022; 39(1): 77–88. doi: 10.1007/s42461-021-00502-y.
- 29. Schuermann D. and Mevissen M. Manmade electromagnetic fields and oxidative stress—biological effects and consequences for health. Int. J. Mol. Sci., 2021; 22(7): 3772. doi: 10.3390/ijms22073772.
- 30. Wdowiak A., Mazurek A., Wdowiak A., and Bojar I. Effect of electromagnetic waves on human reproduction. *Ann. Agric. Environ. Med.*, 2017; 24(1): 13–18. doi: 10.5604/12321966.1228394.
- 31. Shimura N. and Kojima S. The lowest radiation dose having molecular changes in the living body. *Dose-Response*, 2018; 16(2). doi: 10.1177/1559325818777326.
- 32. Averbeck D. and Rodriguez-Lafrasse C. Role of mitochondria in radiation responses: epigenetic, metabolic, and signaling impacts. *Int. J. Mol. Sci.*, 2021; 22(20): 11047. doi: 10.3390/ijms222011047.
- 33. Tuieng R.J., Cartmell S.H., Kirwan C.C., and Sherratt M.J. The effects of ionising and non-ionising electromagnetic radiation on extracellular matrix proteins. *Cells*, 2021; 10(11): 3041. doi: 10.3390/cells10113041.
- 34. Ruprecht N.A., Singhal S., Schaefer K., Panda O., Sens D., and Singhal S.K. A review: multi-omics approach to studying the association between ionizing radiation effects on biological aging. *Biology (Basel).*, 2024; 13(2): 98. doi: 10.3390/biology13020098.
- 35. Winters T.A. et al. Considerations of medical preparedness to assess and treat various populations during a radiation public health emergency. *Radiat. Res.*, 2023; 199(3). doi: 10.1667/RADE-22-00148.1.
- 36. Mojeed Omotayo Adelodun and Evangel Chinyere Anyanwu. A critical review of public health policies for radiation protection and safety. *Int. J. Front. Med. Surg. Res.*, 2024; 6(1): 029–046. doi: 10.53294/ijfmsr.2024.6.1.0038.
- 37. Zachariah S.M., Antony T., Grohens Y., and Thomas S. From waste to wealth: A critical review on advanced materials for EMI shielding. *J. Appl. Polym. Sci.*, 2022; 139(40). doi: 10.1002/ap52974.
- 38. Ren Z. et al. Research on the electrical conductivity and mechanical properties of copper slag multiphase nano-modified electrically conductive cementitious composite. *Constr. Build. Mater.*, 2022; 339: 127650. doi: 10.1016/j.conbuildmat.2022.127650.
- 39. Gnanaraj S.J., and Vasugi K. A comprehensive review of hydrophobic concrete: surface and bulk modifications for enhancing corrosion resistance. *Eng. Res. Express*, 2024; 6(3). doi: 10.1088/2631-8695/ad5d55.
- 40. Liu J., Yu M.-Y., Yu Z.-Z., and Nicolosi V. Design and advanced manufacturing of electromagnetic interference shielding materials. *Mater. Today.*, 2023; 66: 245–272. doi: 10.1016/j.mattod.2023.03.022.
- 41. Raagulan K., Kim B.M., and Chai K.Y. Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. *Nanomaterials*, 2020; 10(4): 702. doi: 10.3390/nano10040702.
- 42. Karthikeyan N.K., Elavenil S. Dispersion effect of nano-structure pyrolytic carbon on mechanical, electrical, and microstructural characteristics of cement mortar composite. *Int. J. Smart Nano Mater.*, 2024; 15(3): 534–578. doi: 10.1080/19475411.2024.2386667.
- 43. Jung M., Lee Y., Hong S.-G., Moon J. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). *Cem. Concr. Res.*, 2020; 131: 106017. doi: 10.1016/j.cemconres.2020.106017.
- 44. Lu D., Leng Z., Lu G., Wang D., and Huo Y. A critical review of carbon materials engineered electrically conductive cement concrete and its potential applications. *Int. J. Smart Nano Mater.*, 2023; 14(2): 189–215. doi: 10.1080/19475411.2023.2199703.
- 45. Ren Z. et al. Mechanical and electrical properties investigation for electrically conductive cementitious composite containing nano-graphite activated magnetite. *J. Build. Eng.*, 2022; 57: 104847, Oct. 2022. doi: 10.1016/j.jobe.2022.104847.
- 46. Yoo D.-Y., Kang M.-C., Choi H.-J., Shin W., and Kim S. Influence of chemically treated carbon fibers on the electromagnetic shielding of ultra-high-performance fiber-reinforced concrete. *Arch. Civ. Mech. Eng.*, 2020; 20(4): 123. doi: 10.1007/s43452-020-00117-y.
- 47. Yuan T.-F., Choi J.-S., Kim S.-K., Yoon Y.-S. Assessment of steel slag and steel fiber to control electromagnetic shielding in high-strength concrete. *KSCE J. Civ. Eng.*, 2021; 25(3): 920–930. doi: 10.1007/s12205-021-0629-1.
- 48. Das N., Mahadela A.S. Nanthagopalan, and G. Verma. Investigation on electromagnetic pulse shielding of conductive concrete. *Proc. Inst. Civ. Eng. - Constr. Mater.*, 2024; 177(2): 62–77. doi: 10.1680/jcoma.22.00041.
- 49. Yoo D.-Y., Oh T., Banthia N. Nanomaterials in ultra-high-performance concrete (UHPC) – A review. *Cem. Concr. Compos.*, 2022; 134: 104730. doi: 10.1016/j.cemconcom2022.104730.
- 50. Du J. et al. New development of ultra-high-performance concrete (UHPC). *Compos. Part B Eng.*, 2021; 224: 109220. doi: 10.1016/j.compositesb.2021.109220.
- 51. Kwek S.Y., and Awang H. Utilization of industrial waste materials for the production of lightweight aggregates: a review. *J. Sustain. Cem. Mater.*, 2021; 10(6): 353–381. doi: 10.1080/21650373.2021.1891583.
- 52. Gülmez N., Koçkal N.U., Özen Ş., Ateş K. Corrosion potential and electromagnetic shielding effectiveness of geopolymer tiles produced with waste metal particles. *Sādhanā*, 2022; 47(3): 115. doi: 10.1007/s12046-022-01891-6.
- 53. Assolie A.A., Al-Migdady A., Borowski G., Alsaqoor S., Ali A.S.B., and Alahmer A. Utilizing waste polyethylene for improved properties of asphalt binders and mixtures: A review. *Adv. Sci. Technol. Res. J.*, 2025; 19(1): 301–320. doi: 10.12913/22998624/195657.
- 54. Yang Z., Yao Y., and Zhuge Y. Enhancing electromagnetic shielding performance of cement-based materials using industrial waste copper swarf. *Constr. Build. Mater.*, 2024; 426: 136162. doi: 10.1016/j.conbuildmat.2024.136162.
- 55. Saleem M.H., Abdul-Hamead A.A., and Othman F.M. Effect of furnace slag on the electromagnetic shielding properties of fiber reinforced concrete. *Mater. Today Proc.*, 2022; 52: 582–587. doi: 10.1016/j.matpr.2021.10.016.
- 56. Ozturk M., Depci T., Bahceci E., Karaaslan M., Akgol O., Sevim U.K. Production of new electromagnetic wave shielder mortar using waste mill scales. *Constr. Build. Mater.*, 2020; 242: 118028. doi: 10.1016/j.conbuildmat.2020.118028.
- 57. Han S. et al. Evaluation of mechanical properties and shielding effectiveness in mortar composites reinforced with waste aluminum alloy perforated sheets. *Case Stud. Constr. Mater.*, 2023; 19: e02606. doi: 10.1016/j.cscm.2023.e02606.
- 58. Logesh G. et al. Carbon fiber reinforced composites from industrial waste for microwave absorption and electromagnetic interference shielding applications. *Ceram. Int.*, 2023; 49(2): 1922–1931. doi: 10.1016/j.ceramint.2022.09.157.
- 59. Roobankumar R. and SenthilPandian M. A review of utilization of waste polyurethane foam as lightweight aggregate in concrete. *Heliyon*, 2024; 10(23): e40479. doi: 10.1016/j.heliyon.2024.e40479.
- 60. Li Y., Liu Y., Jin C., Mu J., and Liu J. Research on mechanical and electromagnetic shielding properties of cement paste with different contents of fly ash and slag. *NDT E Int.*, 2023; 133: 102736. doi: 10.1016/j.ndteint.2022.102736.
- 61. Wanasinghe D., Aslani F., and Ma G. Effect of water to cement ratio, fly ash, and slag on the electromagnetic shielding effectiveness of mortar. *Constr. Build. Mater.*, 2020; 256: 119409. doi: 10.1016/j.conbuildmat.2020.119409.
- 62. Musiał M. et al. Evaluation of mechanical properties and hpm pulse shielding effectiveness of cement-based composites. *Energies*, 2023; 16(10): 4062. doi: 10.3390/en16104062.
- 63. Jasim M.H., Nasr M.S., Beiram A.A.H., and Heil S.M. Mechanical, durability and electrical properties of steel fibers reinforced concrete. *Adv. Sci. Technol. Res. J.*, 2024; 18(7): 163–175. doi: 10.12913/22998624/193196.
- 64. Raghav M., Park T., Yang H.-M., Lee S.-Y., Karthick S., Lee H.-S. Review of the effects of supplementary cementitious materials and chemical additives on the physical, mechanical and durability properties of hydraulic concrete. *Materials (Basel)*, 2021; 14(23): 7270. doi: 10.3390/ma14237270.
- 65. Hutagalung S.D., Sahrol N.H., Ahmad Z.A., Ain M.F., and Othman M. Effect of MnO2 additive on the dielectric and electromagnetic interference shielding properties of sintered cement-based ceramics. *Ceram. Int.*, 2012; 38(1): 671–678. doi: 10.1016/j.ceramint.2011.07.055.
- 66. Geetha S., Satheesh Kumar K.K., Rao C.R.K., Vijayan M., and Trivedi D.C. EMI shielding: Methods and materials—A review. *J. Appl. Polym. Sci.*, 2009; 112(4): 2073–2086. doi: 10.1002/ap29812.
- 67. Yin J., Ma W., Gao Z., Lei X., and Jia C. A review of electromagnetic shielding fabric, wave-absorbing fabric and wave-transparent fabric. *Polymers (Basel)*, 2022; 14(3): 377. doi: 10.3390/polym14030377.
- 68. Roobankumar R. and Senthilpandian M. Physical and mechanical properties of lightweight concrete with the incorporation of waste disposal polyurethane foam as coarse aggregate. *Glob. Nest J.*, 2024; 26(7). doi: 10.30955/gnj.05845.
- 69. Lee J.-H., Choi J.-S., Yuan T.-F., and Yoon Y.-S. Shielding effectiveness and impact resistance of concrete walls strengthened by high-strength high-ductility concrete. *Materials (Basel)*, 2021; 14(24): 7773. doi: 10.3390/ma14247773.
- 70. Chung D.D.L. Materials for electromagnetic interference shielding. *J. Mater. Eng. Perform.*, 2000; 9(3): 350–354. doi: 10.1361/105994900770346042.
- 71. Jang J.-M., Lee H.-S., and Singh J.K. Electromagnetic shielding performance of different metallic coatings deposited by arc thermal spray process. *Materials (Basel)*, 2020; 13(24): 5776. doi: 10.3390/ma13245776.
- 72. Pan W., Kong F., Zhang H., Bian G., and Zhang Y. Electromagnetic shielding material effects on the ordnance store protection. *DEStech Trans. Eng. Technol. Res. Amita.*, 2016. doi: 10.12783/dtetr/amita2016/3567.
- 73. Park H.H., Kwon J.H., Il Kwak S., and Ahn S. Magnetic shielding analysis of a ferrite plate with a periodic metal stri. *IEEE Trans. Magn.*, 2015; 51(8): 1–8. doi: 10.1109/TMAG.2015.2425796.
- 74. Ren F. et al. Highly bendable and durable waterproof paper for ultra-high electromagnetic interference shielding. *Polymers (Basel)*, 2019; 11(9): 1486. doi: 10.3390/polym11091486.
- 75. Lokesh R., Pandian M.S., Karthikeyan N.K., and Hema N. Performance of different post-tensioning slab system and its environmental constraints. *AIP Conf. Proc.*, 2023; 2764(1): 50008, Se 2023, doi: 10.1063/5.0144285.
- 76. Ozturk M., Sevim U.K., Akgol O., Unal E., and Karaaslan M. Investigation of the mechanic, electromagnetic characteristics and shielding effectiveness of concrete with boron ores and boron containing wastes. Constr. Build. Mater., 252, 119058, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.119058.
- 77. Hasar U.C. et al. Mechanical and electromagnetic properties of self-compacted geopolymer concretes with nano silica and steel fiber additives. IEEE Trans. Instrum. Meas., 2022; 71: 1–8. doi: 10.1109/TIM.2022.3173272.
- 78. Chen W. et al. Simultaneously enhanced mechanical and electromagnetic interference shielding properties of steel slag-recycled carbon fiber cementitious composites via wet-grinding process. Mater. Struct., 2023; 56(10): 182. doi: 10.1617/s11527-023-02268-9.
- 79. Cao Y., Khadimallah M.A., Ahmed M., and Assilzadeh H. Enhancing structural analysis and electromagnetic shielding in carbon foam composites with applications in concrete integrating XGBoost machine learning, carbon nanotubes, and montmorillonite. Synth. Met., 2024; 307: 117656. doi: 10.1016/j.synthmet.2024.117656.
- 80. Kim S., Jang Y.S., Oh T., Lee S.K., and Yoo D.-Y. Effect of crack width on electromagnetic interference shielding effectiveness of high-performance cementitious composites containing steel and carbon fibers. J. Mater. Res. Technol., 2022; 20: 359–372. doi: 10.1016/j.jmrt.2022.07.041.
- 81. Hong S.-H., Choi J.-S., Yuan T.-F., and Yoon Y.-S. Mechanical and electrical characteristics of lightweight aggregate concrete reinforced with steel fibers. Materials (Basel) 2021; 14(21): 6505. doi: 10.3390/ma14216505.
- 82. Liu H. et al. Influence and mechanism of ultra-high molecular weight polyethylene on mechanical and electromagnetic shielding properties of alkali-activated composite mortar based on magnesium slag, blast-furnace slag and silica fume. J. Environ. Chem. Eng., 12(2): 112437. doi: 10.1016/j.jece.2024.112437.
- 83. Kim S., Vu C.M., Kim S., In I., and Lee J. Improved mechanical strength of dicatechol crosslinked MXene films for electromagnetic interference shielding performance. Nanomaterials 13(5): 787. doi: 10.3390/nano13050787.
- 84. Wang Z., Han X., Han X., Chen Z., Wang S., Pu J. MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohydr. Polym. 2021; 254, 117033. doi: 10.1016/j.carbpol.2020.117033.
- 85. Kaya O., Merve Annagur H., and Altintas O. Experimental investigation of mechanical and electromagnetic performance of asphalt concrete containing different ratios of graphite powder as a filler to be potentially used as part of wireless electric roads. Balt. J. Road Bridg. Eng., 18(4): 19–41. doi: 10.7250/2023-18.617.
- 86. Ozturk M., Akgol O., Sevim U.K., Karaaslan M., Demirci M., and Unal E. Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag. Constr. Build. Mater. 2018; 165: 58–63. doi: 10.1016/j.conbuildmat.2018.01.031.
- 87. Lee S. et al. Electromagnetic wave shielding properties of amorphous metallic fiber-reinforced high-strength concrete using waveguides. Materials (Basel) 2021; 14(22): 7052. doi: 10.3390/ma14227052.
- 88. Si T. et al. Synergistic effects of carbon black and steel fibers on electromagnetic wave shielding and mechanical properties of graphite/cement composites. J. Build. Eng. 2022; 45: 103561. doi: 10.1016/j.jobe.2021.103561.
- 89. Jiang W. et al. Adhesive sulfide solid electrolyte interface for lithium metal batteries. ACS Appl. Mater. Interfaces, 12(49): 54876–54883. doi: 10.1021/acsami.0c17828.
- 90. Cai J.-H., Tang X.-H., Chen X.-D., and Wang M. Temperature and strain-induced tunable electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites with temperature-sensitive microspheres. Compos. Part A Appl. Sci. Manuf. 2021; 140: 106188. doi: 10.1016/j.compositesa.2020.106188.
- 91. Ryu S.H., et al. Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 2022; 428, 131167. doi: 10.1016/j.cej.2021.131167.
- 92. Aslam M.A. et al. Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance. Appl. Surf. Sci. 2021. 543: 148785. doi: 10.1016/j.apsusc.2020.148785.
- 93. Kumar R. et al. Lightweight carbon-red mud hybrid foam toward fire-resistant and efficient shield against electromagnetic interference. Sci. Rep. 2020; 10(1): 9913. doi: 10.1038/s41598-020-66929-3.
- 94. Liang B. et al. Composite nanofibers by growing polypyrrole on the surface of polyaniline nanofibers formed under free melting condition and shell-thickness-dependent capacitive properties. Fibers Polym. 2020; 21(8): 1722–1732. doi: 10.1007/s12221-020-1056-5.
- 95. Zhang Y. et al. Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Compos. Part A Appl. Sci. Manuf. 2020; 137: 105994. doi: 10.1016/j.compositesa.2020.105994.
- 96. Yin D., Pan Y., Guo Q., Wang Y., and Huang J. Preparation and properties of flexible nanocellulose fibers/Ag nanoparticles composite films with excellent electromagnetic shielding performance. Appl. Phys. A. 2022. 128(1): 43. doi: 10.1007/s00339-021-05148-7.
- 97. Jang D., Choi B.H., Yoon H.N., Yang B., and Lee H.K. Improved electromagnetic wave shielding capability of carbonyl iron powder-embedded lightweight CFRP composites. Compos. Struct. 2022; 286: 115326. doi: 10.1016/j.compstruct.2022.115326.
- 98. Sun Y. et al. MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J., 410, 128348, Apr. 2021, doi: 10.1016/j.cej.2020.128348.
- 99. Kamkar M., Ghaffarkhah A., Hosseini E., Amini M., Ghaderi S., and Arjmand M. Multilayer polymeric nanocomposites for electromagnetic interference shielding: fabrication, mechanisms, and prospects. New J. Chem., 45, 46, p 21488–21507, 2021, doi: 10.1039/D1NJ04626H.
- 100. De A. et al. Nanostructured cigarette wrapper encapsulated PDMS‐RGO sandwiched composite for high performance EMI shielding applications. Polym. Eng. Sci., 60, 12, p 3056–3071, Dec. 2020, doi: 10.1002/pen.25536.
- 101. La Rosa A.D. et al. Recovery of electronic wastes as fillers for electromagnetic shielding in building components: An LCA study. J. Clean. Prod., 280, 124593, Jan. 2021, doi: 10.1016/j.jclepro.2020.124593.
- 102. Bora J., Azeem I., Vinoy K.J., Ramamurthy C., and Madras G. Polyvinylbutyral–polyaniline nanocomposite for high microwave absorption efficiency. ACS Omega, 3, 12, p 16542–16548, Dec. 2018, doi: 10.1021/acsomega.8b02037.
- 103. Vazhayal L., Wilson, and Prabhakaran K. Waste to wealth: Lightweight, mechanically strong and conductive carbon aerogels from waste tissue paper for electromagnetic shielding and CO2 adsorption. Chem. Eng. J., 381, 122628, Feb. 2020, doi: 10.1016/j.cej.2019.122628.
- 104. Loganathan G., Sumathi A., and Mohan K.S.R. Influence of waste glass powder and hybrid fibers on high strength concrete. 2020, 020018. doi: 10.1063/5.0029749.
- 105. Xie Y., Ye L., Chen W., and Liu Y. Electrically conductive and all-weather materials from waste cross-linked polyethylene cables for electromagnetic interference shielding. Ind. Eng. Chem. Res., 61, 10, p 3610–3619, Mar. 2022, doi: 10.1021/acs.iecr.1c04813.
- 106. Kang, Z. Jin, Yang S., and Wang Q. The novel upgrade recycling of waste epoxy for thermal management and electromagnetic shielding application. Compos. Part A Appl. Sci. Manuf., 152, 106710, Jan. 2022, doi: 10.1016/j.compositesa.2021.106710.
- 107. Yang S., Li W., Bai S., and Wang Q. High-performance thermal and electrical conductive composites from multilayer plastic packaging waste and expanded graphite. J. Mater. Chem. C, 6, 41, 11209–11218, 2018, doi: 10.1039/C8TC02840K.
- 108. Gu Li L., Lai Q., Zeng G.-X., Li Y.-J., Xie H.-Z., and Kwok Hung Kwan A. Combined effects of micro and nano Fe3O4 on workability, strength, packing, microstructure and EM wave absorbing properties of mortar. Constr. Build. Mater 2023; 406, 133407, doi: 10.1016/j.conbuildmat.2023.133407.
- 109. Chintalapudi K. and Pannem R.M.R. An intense review on the performance of Graphene Oxide and reduced Graphene Oxide in an admixed cement system. Constr. Build. Mater., 259, 120598, Oct. 2020, doi: 10.1016/j.conbuildmat.2020.120598.
- 110. Salama A.H.E.S., Assolie A.A., Alsafasfeh A. Mechanical performance and microstructure evolution of nano-TiO2 enhanced cement – a comprehensive experimental analysis. Adv. Sci. Technol. Res. J 2024; 18(7): 203–214. doi: 10.12913/22998624/193524.
- 111. Nivethika S.D., Senthilpandian M. Microstrip patch antenna for aluminium formwork applications in construction. in 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT), IEEE, 2022, 1–5. doi: 10.1109/IC3IOT53935.2022.9767945.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0db96cbc-df77-4bca-964a-44e29abbc755
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.