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Abstract. The canonical injective decomposition of a jointly quasinormal family of operators
is given. Relations between the decomposition of a quasinormal operator T and the decompo-
sition of a partial isometry in the polar decomposition of T are described. The decomposition
of pairs of commuting quasinormal partial isometries and its applications to pairs of com-
muting quasinormal operators is shown. Examples are given.

Keywords: multiple canonical decomposition, quasinormal operators, partial isometry.

Mathematics Subject Classification: 47B20, 47A45.

1. INTRODUCTION

Let L(H) be the algebra of all bounded linear operators on a complex Hilbert spaceH.
If T ∈ L(H), then T ∗ stands for the adjoint of T. By N (T ) and R(T ) we denote the
kernel and the range space of T respectively.

By a subspace we always understand a closed subspace. The orthogonal comple-
ment of a subspaceH0 ⊂ H is denoted byH⊥0 orH	H0. The commutant of T ∈ L(H)
denoted by T ′ is the algebra of all operators commuting with T. A subspace H0 ⊂ H
is T hyperinvariant, when it is invariant for every S ∈ T ′. An orthogonal projection
onto H0 is denoted by PH0

. A subspace H0 reduces operator T ∈ L(H) (or is reduc-
ing for T ) if and only if PH0

∈ T ′. An operator is called completely non unitary (non
normal, non isometric etc.) if there is no non trivial subspace reducing it to a unitary
operator (normal operator, isometry). Such an operator is also called pure.

LetW denote some property of an operator T ∈ L(H) (like being unitary, normal,
isometry etc.) If there is a decomposition H = H1 ⊕ H2 such that H1, H2 reduce
operator T and T |H1

has the property W while T |H2
is pure, then

T = T |H1
⊕ T |H2
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is called a W canonical decomposition of T. The classical example of a canonical
decomposition is the Wold decomposition [11]. Wold showed that any isometry can
be decomposed into a unitary and a completely non unitary operators. An isometry
S ∈ L(H) is called a unilateral shift if H =

⊕
n≥0 S

n(N (S∗)). A completely non
unitary isometry is a unilateral shift.

An operator T ∈ L(H) is called quasinormal, if it is normal on R(T ) (i.e.
TT ∗T = T ∗TT ). The class of quasinormal operators has been introduced by Brown
in [2]. Quasinormal operators are subnormal. Every quasinormal operator T can be
decomposed to N⊕S⊗A, where N is normal, S is a unilateral shift and A is a positive,
injective operator. For a quasinormal operator T holds N (T ) ⊂ N (T ∗). Thus N (T )
reduces a quasinormal operator. Recall that |T | =

√
T ∗T . An operator W is a partial

isometry, if the restriction W |N (W )⊥ is an isometry. Every T ∈ L(H) has the polar
decomposition T = W |T |, where W is a partial isometry. Operator T is quasinormal
if and only if W |T | = |T |W. Recall after [7] that a family of operators A ⊂ L(H) is
called jointly quasinormal, if ST ∗T = T ∗TS holds for all S, T ∈ A.

Assume that, for some property W, there are W canonical decompositions of
operators T1, T2 ∈ L(H). If there is a decomposition H = H11 ⊕ H12 ⊕ H21 ⊕ H22,
where each Hij reduces operators T1, T2 for i, j = 1, 2, such that: T1|Hij has the
property W for i = 1, is pure for i = 2 and T2|Hij has the property W for j = 1 and
is pure for j = 2, then

Tk = Tk|H11
⊕ Tk|H12

⊕ Tk|H21
⊕ Tk|H22

for k = 1, 2

is called a W multiple canonical decomposition. Multiple canonical decompositions
can be defined in a similar way for families of operators. Recall that operators
T1, T2 ∈ L(H) doubly commute if T1, T

∗
1 ∈ T ′2. Recall after [4] that a family of doubly

commuting operators has a multiple canonical decomposition if each operator in the
family has a (single) canonical decomposition. However, the doubly commutativity
assumption is rather strong. Only a normal operator can doubly commute with itself.
On the other hand, a pair T, T has a multiple canonical decomposition if T has a
canonical decomposition.

In the present paper we show that, although there does not need to exist a normal
canonical decomposition of a jointly quasinormal family of operators, there is an
injective canonical decomposition. We also give a generalization of this decomposition
to a pair of commuting quasinormal partial isometries. The generalization is not a
canonical decomposition. In the last paragraph we give some applications of this
decomposition to arbitrary pairs of commuting quasinormal operators.

2. DECOMPOSITIONS OF A QUASINORMAL OPERATOR

By the model given by Brown a quasinormal operator has a normal canonical de-
composition. Let T ∈ L(H) be a quasinormal operator. Recall after [10] that if T is
additionally a contraction, then the subspace N (I − T ∗T ) is the maximal subspace
reducing T to an isometry. Note that a subspace reduces operator T if and only if it
reduces αT, for α ∈ C\{0}. If |α| 6= 1, thenN (I−T ∗T ) 6= N (I−(αT )∗(αT )) . Since αT
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is not a contraction for sufficiently large |α|, it is not known whetherN (I−(αT )∗(αT ))
reduces T. In this section the existence of the maximal subspace reducing a bounded
quasinormal operator to an isometry will be proved. As a consequence, any eigenspace
of |T | reduces operator T to an isometry weighted by the corresponding eigenvalue.
Moreover, such a subspace is |T | hyperinvariant.

Remark 2.1. Let A ∈ L(H) be a positive operator. For x ∈ N (I − A) we have
x = Ax ∈ R(A). Consequently, the subspace N (I − A) is orthogonal to N (A). An
arbitrary x ∈ N (A−A2) can be decomposed to x = (x−Ax)+Ax ∈ N (A)⊕N (I−A).
It follows that N (A−A2) ⊂ N (I−A)⊕N (A). Since the reverse inclusion is obvious,
we have N (A−A2) = N (I −A)⊕N (A).

For arbitrary x ∈ N (I −A2), we have

0 ≤ (A(x−Ax), x−Ax) = (Ax− x, x−Ax) = −‖x−Ax‖2 ≤ 0.

Consequently, N (I −A2) = N (I −A).

A decomposition of an operator T is called T hyperinvariant, when subspaces in the
corresponding decomposition of the Hilbert space H =

⊕
iHi are T hyperinvariant.

It follows that Hi and H 	Hi are T hyperinvariant and consequently subspaces Hi

reduce every operator in T ′.

Proposition 2.2. Let T ∈ L(H) and |T | =
√
T ∗T . Then the decomposition

H = R(|T | − T ∗T )⊕N (I − |T |)⊕N (T )

is |T | hyperinvariant.

Proof. Since the operator |T | − T ∗T is self-adjoint, then

H = R(|T | − T ∗T )⊕N (|T | − T ∗T ).

By Remark 2.1, we obtain the decomposition

N (|T | − T ∗T ) = N (|T |)⊕N (I − |T |).

Obviously commutants of |T | and I−|T | are equal. Since the kernel of an operator is a
hyperinvariant subspace, then N (I−|T |) and N (|T |) = N (T ) are |T | hyperinvariant.
The orthogonal complement of a subspace, which is hyperinvariant for a self-adjoint
operator is also a hyperinvariant subspace. Thus R(|T | − T ∗T ) is |T | hyperinvariant
as well.

As a corollary we obtain the following decomposition.

Proposition 2.3. Let T ∈ L(H) be a quasinormal operator. There is a decomposition

H = R(T ∗T − T ∗2T 2)⊕N (I − T ∗T )⊕N (T ),

where the subspaces are the maximal reducing operator T, such that:

(i) T |R(T∗T−T∗2T 2)
is a completely non isometric, injective, quasinormal operator,
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(ii) T |N (I−T∗T ) is an isometry,
(iii) T |N (T ) = 0.

Moreover, each of these subspaces is |T | hyperinvariant.

Proof. Applying Proposition 2.2 to the operator T ∗T we obtain the decomposition

H = R(T ∗T − (T ∗T )2)⊕N (I − T ∗T )⊕N (T ∗T ).

Since |T ∗T | = T ∗T , the decomposition is T ∗T hyperinvariant. Commutants of T ∗T
and its square root |T | are equal. Thus the decomposition is also |T | hyperinvariant.
Since N (T ) = N (T ∗T ) and by quasinormality (T ∗T )2 = T ∗2T 2 the decomposition is
equivalent to

H = R(T ∗T − T ∗2T 2)⊕N (I − T ∗T )⊕N (T ).

Since T is quasinormal, it commutes with |T |. Consequently, subspaces obtained in
the decomposition reduce T.

Since for an isometry T ∗T = I, then a subspace reducing T, reduces the oper-
ator to an isometry if and only if it is a subspace of N (I − T ∗T ). On the other
hand we have shown that N (I − T ∗T ) reduces T. Thus it is the maximal subspace
reducing T to an isometry. Since N (T ) reduces T, it is the maximal subspace re-
ducing T to a zero operator. Since R(T ∗T − T ∗2T 2) is the orthogonal complement
of N (T )⊕N (I − T ∗T ), it is the maximal subspace reducing T to a completely non
isometric, injective, quasinormal operator.

By the proposition above, we obtain the following decomposition.

Theorem 2.4. Let T ∈ L(H) be a quasinormal operator, where H is a separable
Hilbert space. There is a decomposition

H =
⋂
λ∈Λ

R(λ|T | − T ∗T )⊕
⊕
λ∈Λ

N (λ2I − T ∗T ),

where Λ is the set of all eigenvalues of |T |. The subspaces are the maximal reducing
operator T such that:

(i) |T |
∣∣⋂

λ∈ΛR(|T |−λT∗T )
has no eigenvectors,

(ii) λ−1T |N (λ2I−T∗T ) is an isometry for λ 6= 0,
(iii) T |N (T ) = 0.

Moreover, each of the subspaces is |T | hyperinvariant.

Since H is separable, there is only countably many eigenvalues of |T |. Hence, in
the decomposition above, there is countably many subspaces and the orthogonal sum
can be used.

Proof. Note that ifN (T ) 6= {0}, then λ = 0 is an eigenvalue of |T | andN (T ) = N (|T |)
is a summand of the decomposition. Since T is quasinormal, then N (T ) reduces T.
Obviously it is the maximal subspace reducing T to a zero operator.
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For any α ∈ C \ {0} denote by λ = 1
|α| . Proposition 2.3 applied to the operator

αT shows that N (I − |α|2T ∗T ) = N (λ2I − T ∗T ) is a |T | hyperinvariant subspace
and reduces the operator αT to an isometry. Consequently, λ−1T |N (λ2I−T∗T ) =
|α|T |N (λ2I−T∗T ) is an isometry. Assume that for some subspace L ⊂ H reducing
T the operator λ−1T |L is an isometry. Then (λ−1T )∗(λ−1T )|L = I|L implies that
L ⊂ N (I − λ−2T ∗T ) = N (λ2I − T ∗T ). Consequently, N (λ2I − T ∗T ) is the maximal
subspace reducing T such that λ−1T is an isometry.

If N (λ2I −T ∗T ) 6= 0, then λ is an eigenvalue of |T |. Subspaces N (λ2I −T ∗T ) are
orthogonal, since they are different eigenspaces of |T |.

By Proposition 2.2 applied to the operator αT , we obtain

R(|α||T | − |α|2T ∗T ) = H 	 (N (I − |α||T |)⊕N (αT )). (2.1)

Note that
∣∣|α|2T ∗T ∣∣ = |α|2T ∗T and since T is quasinormal, (T ∗T )2 = T ∗2T 2. Thus

by Proposition 2.2 applied to the operator |α|2T ∗T , we obtain

R(|α|2T ∗T − |α|4T ∗2T 2) = H 	 (N (I − |α|2T ∗T )⊕N (|α|2T ∗T )). (2.2)

Since α 6= 0, then N (|α|2T ∗T ) = N (αT ) = N (T ). By Remark 2.1 applied to A =
|α||T |, we obtain N (I − |α||T |) = N (I − |α|2|T |2) = N (I − |α|2T ∗T ). Consequently,
the right hand sides of equalities (2.1) and (2.2) are equal. It follows that

R(|α|2T ∗T − |α|4T ∗2T 2) = R(|α||T | − |α|2T ∗T ) = R(λ|T | − T ∗T ).

By the equality above and Proposition 2.3 applied to the operator αT , we have that

H 	N (λ2I − T ∗T ) = R(λ|T | − T ∗T )⊕N (T ).

Note that either N (T ) is {0} or is an eigenspace of |T |. Thus

H 	
⊕
λ∈Λ

N (λ2I − T ∗T ) =
⋂
λ∈Λ

R(λ|T | − T ∗T ).

It is a |T | hyperinvariant subspace, since it is an intersection of such subspaces. By
the construction above, the orthogonal complement of

⋂
λ∈ΛR(λ|T | − T ∗T ) is a sub-

space generated by all eigenvectors of |T |. Thus
⋂
λ∈ΛR(λ|T | − T ∗T ) is the maximal

subspace reducing T such that |T | has no eigenvalues.

3. DECOMPOSITIONS OF SOME FAMILIES
OF QUASINORMAL OPERATORS

In [4] it has been proved that a family of doubly commuting quasinormal operators
has a multiple normal canonical decomposition. The results do not extend to a jointly
quasinormal family – Example 1 in [9]. We can obtain the following decomposition.
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Theorem 3.1. Let {Ti}i∈Z ⊂ L(H) be a family of jointly quasinormal operators on
a separable Hilbert space H, where Z ⊂ Z is finite or infinite. Denote by Λ the set of
all sequences {αi}i∈Z such that αi is an eigenvalue of |Ti| or αi =∞ for i ∈ Z. There
is a decomposition

H =
⊕
α∈Λ

Hα

into subspaces reducing the family {Ti}i∈Z , where for every α ∈ Λ and i ∈ Z

(i) Ti|Hα = 0 for αi = 0,
(ii) α−1

i Ti|Hα is an isometry for αi ∈ (0,∞),
(iii) Ti|Hα is such that |Ti| has no eigenvectors for αi =∞.

Proof. Denote by H = Hi
∞ ⊕

⊕
j∈Ji H

i
λij

the decomposition of the operator Ti given

by Theorem 2.4, where {λij}j∈Ji are all eigenvalues of |Ti| for i ∈ Z. Precisely,
Hi

0 = N (Ti), H
i
λij

= N ((λij)
2I − T ∗i Ti) and Hi

∞ =
⋂
j∈Ji R(λij |Ti| − T ∗i Ti). Note

that Λ is the cartesian product of {λij}j∈Ji ∪ {∞} for i ∈ Z. Since decomposi-
tions are |Ti| hyperinvariant for every i ∈ Z and the family is jointly quasinormal,
each subspace in each decomposition reduces the whole family {Ti}i∈Z . Thus sub-
spaces Hα =

⋂
i∈Z H

i
αi reduce the family, since they are intersections of such sub-

spaces. By the construction above, the subspaces Hα have suitable properties and
H =

⊕
α∈ΛHα.

Beside a normal canonical decomposition of a quasinormal operator there is also
a canonical decomposition into an injective operator and a zero operator. Obviously
a zero operator is normal. Therefore an injective decomposition can be understand as
a partial result compared to the normal decomposition. A jointly quasinormal family
need not have a multiple normal canonical decomposition. However, as a corollary
of Theorem 3.1, a jointly quasinormal family of operators has a multiple injective
canonical decomposition.

Theorem 3.2. Let {Ti}i∈Z ⊂ L(H) be a family of jointly quasinormal operators on a
separable Hilbert space H, where Z ⊂ Z is finite or infinite. There is a decomposition

H =
⊕

α∈{0,1}Z
Hα

into subspaces reducing the family {Ti}i∈Z , where for every α ∈ Λ and i ∈ Z

(i) Ti|Hα = 0 for αi = 0,
(ii) Ti|Hα is injective for αi = 1.

There is a natural question of a decomposition with weaker than a joint quasi-
normality assumption. By the following Remarks 3.3 and 3.5, we can describe an
interesting subclass of quasinormal operators.

Remark 3.3. Let H0 reduces a quasinormal operator T. Let T = W |T | be the polar
decomposition, where W is a partial isometry. Obviously H0 and H	H0 reduce T ∗T
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which is equivalent to the commutativity of PH0
and PH	H0

with T ∗T. Consequently
PH0 , PH	H0 commute with |T | and subspaces H0, H	H0 are |T | invariant. Note that
N (|T |) = N (T ) = N (W ). Thus for any x ∈ H we haveW ∗x ⊥ N (|T |). It follows that
T ∗x = |T |W ∗x = 0 if and only ifW ∗x = 0. Thus N (W ∗) = N (T ∗) ⊃ N (T ). It follows
that Wx,W ∗x are orthogonal to N (T ) = N (|T |). Since N (|T |) is a hyperinvariant
subspace of |T |, it reduces PH	H0

. Thus for any x ∈ H0 we have

0 = PH	H0
Tx = PH	H0

|T |Wx = |T |PH	H0
Wx

and consequently

PH	H0
Wx = PN (|T |)PH	H0

Wx = PH	H0
PN (|T |)Wx = 0.

Similarly, PH	H0
W ∗x = 0. Since x has been taken arbitrary, it follows that H0

reduces W.

By Remark 3.3 subspaces in any decomposition of a quasinormal operator reduce
also a partial isometry in the polar decompositions of the operator. In this sense a
decomposition of a quasinormal operator generates the corresponding decomposition
of a partial isometry. It can be shown that subspaces in the Wold decomposition of an
isometric part of a partial isometry reduce a whole quasinormal operator. In general,
a subspace reducing a partial isometry in the polar decomposition of a quasinormal
operator does not need to reduce the quasinormal operator.

Example 3.4. Let H =
⊕

n≥0 Cen ⊕ Cfn, where en, fn are orthonormal vectors for
n ≥ 0. Define Ten = 2en+1, T fn = fn+1. Then Wen = en+1,Wfn = fn+1. A closed
subspace generated by en + fn for n ≥ 0 reduces W but does not reduce T.

Partial isometries which are obtained in the polar decomposition of quasinormal
operators are also interesting because they are quasinormal.

Remark 3.5. Let T ∈ L(H) be a quasinormal operator and T = W |T | denotes the
polar decomposition. Then W is quasinormal.

Proof. For a partial isometry, we have WW ∗W = W. Thus we need to show that
W ∗W 2 = W. It is trivial for vectors from N (W ) = N (|T |) = N (T ). Take arbitrary x
such that x = |T |y for some y ∈ H. Since N (T ) ⊂ N (T ∗) for a quasinormal operator,
then R(T ) ⊂ H 	N (T ) and W |R(T )

is an isometry. Consequently, W ∗WT = T and

W ∗W 2x = W ∗W 2|T |y = W ∗WTy = Ty = W |T |y = Wx.

Thus we have W ∗W 2 = W on a dense set in H 	N (W ).

Quasinormal partial isometries forms an interesting subclass of quasinormal oper-
ators. It is easy to verify that the injective decomposition of a quasinormal operator
corresponds to the decomposition of a partial isometry in the polar decomposition to
an isometry and a zero operator. We restrict our consideration to pairs of commuting
quasinormal partial isometries. Note some properties of such pairs.
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Lemma 3.6. For T1, T2 ∈ L(H) commuting quasinormal partial isometries hold:

(i) N (T1T2) = N (Ti)⊕ T ∗i Ti(N (T1T2)) for i = 1, 2,
(ii) T ∗1 T1(N (T1T2)) ⊂ N (T ∗2 ), T ∗2 T2(N (T1T2)) ⊂ N (T ∗1 ),
(iii) N (T1T2) ⊂ N (T ∗1 T

∗
2 ).

Proof. Since for partial isometries T ∗i Ti = PN (Ti)⊥ , then by inclusions N (Ti) ⊂
N (T1T2) for i = 1, 2 follows the decomposition in (i).

We will show the first inclusion in (ii). By inclusions T1(N (T1T2)) ⊂ N (T2) ⊂
N (T ∗2 ) ⊂ N (T ∗1 T

∗
2 ), it follows that T ∗1 T1(N (T1T2)) ⊂ N (T ∗2 ).

To show (iii) note that by a combination of properties of a quasinormal operator
and a partial isometry we have that T ∗i T 2

i = TiT
∗
i Ti = Ti for i = 1, 2. For adjoints we

obtain that T ∗i = T ∗2i Ti. Therefore T ∗1 T ∗2 = T ∗1 (T ∗2 )2T2 = (T ∗2 )2T ∗1 T2. It follows that
N (T1T2) ⊂ N (T ∗1 T2) ⊂ N ((T ∗2 )2T ∗1 T2) = N (T ∗1 T

∗
2 ).

Denote by

Hni =
⋂
{L ⊂ H : N (T1T2) ⊂ L and L reduces T1, T2} (3.1)

and
HIs = H 	Hni. (3.2)

Since N (T1T2) = N (T1) ⊕ T ∗2 T2(N (T1T2)) ⊂ N (T1) + T ∗2 (N (T1)) and N (Ti) ⊂
N (T1T2) for i = 1, 2, then Hni is the minimal subspace reducing both operators
and containing N (T1) and N (T2). Thus HIs is the maximal subspace reducing the
pair T1, T2 to isometries. Restrictions T1|Hni , T2|Hni form a completely non isometric
pair. The commuting isometries are being studied by many authors (see [1, 3, 8]). In
the following part we consider a pair of commuting quasinormal partial isometries and
describe how one of them acts between the kernel and the isometric part of the other
one. Obviously H00 = N (T1) ∩ N (T2) reduces both operators. Consider Hni 	H00.
Recall after [6] that a pair of isometries V1, V2 is called compatible if PR(V n1 )

commutes
with PR(Vm2 )

for every n,m ∈ Z+. It can be shown that isometries are compatible if
and only if

N (V ∗n1 ) = (N (V ∗n1 ) ∩N (V ∗m2 ))⊕ (N (V ∗n1 ) ∩R(V m2 ))

for every n,m ∈ Z+. We will follow the idea of compatibility but decompose kernels
of quasinormal operators instead of kernels of theirs adjoints.

Definition 3.7. We call a pair of commuting quasinormal operators T1, T2 ∈ L(H)
q-compatible, if N (T1)	 (N (T1)∩N (T2)) is orthogonal to N (T2)	 (N (T1)∩N (T2)).

SinceN (T ) reduces a quasinormal operator T , we haveN (Tn) = N (T ) for n ∈ Z+.
Therefore in the definition of q-compatibility we do not concern powers of the operator.
To avoid misunderstanding in case of isometries which are quasinormal we can not
call the defined property simply compatibility.
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Remark 3.8. If there is the maximal subspace L ⊂ H reducing the pair T1, T2 and
such that

(N (T1) ∩ L) ⊥ (N (T2) ∩ L),

then each subspace L0 reducing operators T1, T2 to isometries or one to an isome-
try and the other one to a zero operator is a subspace of L. Indeed, in such case
N (T1|L0

) ⊥ N (T2|L0
) because at least one of the kernels is {0}. Since L0 reduces

both operators N (Ti|L0) = N (Ti) ∩ L0 for i = 1, 2. Then by the maximality of L
follows that L0 ⊂ L.

Our aim is to find the maximal subspace L described in Remark 3.8. Decompose

N (Ti) ∩ (Hni 	H00) = Gi ⊕ Fi,

where

G1 = N (T1) ∩ T ∗2 T2(N (T1T2)), G2 = N (T2) ∩ T ∗1 T1(N (T1T2)) (3.3)

and
Fi = N (Ti)	 (Gi ⊕H00) for i = 1, 2. (3.4)

Since Ti is a patrial isometry, then T ∗i Ti = PN (Ti)⊥ for i = 1, 2. Thus R(T ∗i Ti)
and T ∗i Ti(N (T1T2)) = N (T1T2) 	 N (Ti) are closed subspaces. Note that for x ∈
N (T1T2) ∩ R(T ∗i Ti) we have x = T ∗1 T1x ∈ T ∗1 T1(N (T1T2)). It follows the inclusion
N (T1T2) ∩ R(T ∗i Ti) ⊂ T ∗i Ti(N (T1T2)) for i = 1, 2. The reverse inclusion holds by
Lemma 3.6(i). Consequently, G1 = N (T1) ∩ R(T ∗2 T2) and G2 = N (T2) ∩ R(T ∗1 T1).
This means that subspaces G1, G2 consist of all vectors which are in the kernel of one
operator and are orthogonal to the kernel of the other one.

The result in the following lemma is known. We give it without proof.

Lemma 3.9. Consider closed subspaces A,B of a Hilbert space K. Then

(A ∩B)⊥ = A⊥ +B⊥.

We use the lemma above to describe some properties of the subspaces F1, F2.

Proposition 3.10. Let T1, T2 ∈ L(H) be commuting quasinormal partial isometries
and F1, F2 be subspaces defined in (3.4). Then F1, F2 ⊂ N (T ∗1 ) ∩N (T ∗2 ).

Proof. Let F12 = N (T1T2)	 (G2 ⊕G1), where G1, G2 are subspaces defined in (3.3).
Denote for convenience: K = N (T1T2), Ai = T ∗i Ti(K), Bi = N (Ti) for i = 1, 2. Note
that G1 = B1 ∩A2, G2 = B2 ∩A1 and consequently

F12 = K 	 ((B2 ∩A1)⊕ (B1 ∩A2)) = (K 	 (B2 ∩A1)) ∩ (K 	 (B1 ∩A2)).

If we consider K as a whole space, then by Lemma 3.9 we obtain

F12 = (K 	B2) + (K 	A1) ∩ (K 	B1) + (K 	A2).



428 Zbigniew Burdak

On the other hand, Lemma 3.6(i),(ii) shows that K = Bi ⊕ Ai for i = 1, 2 and
A1, B2 ⊂ N (T ∗2 ), A2, B1 ⊂ N (T ∗1 ). Thus

F12 = (A2 +B1) ∩ (A1 +B2) ⊂ N (T ∗1 ) ∩N (T ∗2 ).

By the definition of F1, it is a subspace of N (T1) ⊂ N (T1T2) and it is orthogonal
to G1. Since G2 is orthogonal to N (T1), then it is also orthogonal to F1 ⊂ N (T1).
Consequently, F1 ⊂ F12. Similarly F2 ⊂ F12. It follows that

Fi ⊂ N (T ∗1 ) ∩N (T ∗2 ) for i = 1, 2.

We will now construct the maximal T1, T2 reducing subspace generated by F1, F2.

Theorem 3.11. Let T1, T2 ∈ L(H) be a pair of commuting quasinormal partial isome-
tries and F1, F2 be subspaces given in (3.4). The subspace

HF =
∑
n≥1

Tn1 (F2)⊕
∑
n≥1

Tn2 (F1)⊕
(
T ∗1 T1(F2) + T ∗2 T2(F1)

)
.

is the minimal subspace reducing T1, T2 and containing F1, F2.

Proof. At the beginning we will show that summands in the definition of HF are in-
deed orthogonal. By quasinormalityN (Ti) ⊂ N (T ∗i ). Note thatR(T ∗i ) = H	N (Ti) ⊃
H 	 N (T ∗i ) = R(Ti) for i = 1, 2. Thus

∑
n≥1 T

n
2 (F1) and T ∗2 T2(F1) are included in

R(T ∗2 ). On the other hand,
∑
n≥1 T

n
1 (F2) ⊂ N (T2). Thus

∑
n≥1 T

n
1 (F2) is orthogo-

nal to
∑
n≥1 T

n
2 (F1) and T ∗2 T2(F1). Recall that for a quasinormal partial isometry

T ∗ = T ∗2T (see proof of Lemma 3.6(iii).) For any x, y ∈ F2 and n ≥ 1 by Propo-
sition 3.10 we have that 0 = (Tn−1

1 x, T ∗1 y) = (Tn−1
1 x, T ∗1 T

∗
1 T1y) = (Tn1 x, T

∗
1 T1y).

Thus
∑
n≥1 T

n
1 (F2) is orthogonal to T ∗1 T1(F2). We have shown that the subspace∑

n≥1 T
n
1 (F2) is orthogonal to the remaining summands. Similarly, the subspace∑

n≥1 T
n
2 (F1) is orthogonal to T ∗1 T1(F2) and T ∗2 T2(F1). This finishes the proof of

the orthogonality.
We make a construction of the minimal T1, T2 reducing subspace containing

subspaces F1, F2. Note that
∑
n≥0 T

n
2 (F1) is T2 invariant and since it is a sub-

space of N (T1) ⊂ N (T ∗1 ), it is T1 reducing. Since T2 is a partial isometry then
T ∗2 T

n
2 (F1) = Tn−1

2 (F1) for n ≥ 2. In case n = 0 Proposition 3.10 shows that
T ∗2 (F1) ⊂ T ∗2 (N (T ∗1 ) ∩ N (T ∗2 )) = {0}. However, T ∗2 T2(F1) may not be included in∑
n≥0 T

n
2 (F1). We obtain a similar result for the subspace

∑
n≥0 T

n
1 (F2). It follows

that the minimal subspace reducing T1, T2 and containing F1, F2 is not smaller than

HF0
:=
∑
n≥0

Tn1 (F2) +
∑
n≥0

Tn2 (F1) + T ∗1 T1(F2) + T ∗2 T2(F1).

We will show that HF0 reduces T1, T2. Note that HF ⊂ HF0 and by the pre-
vious argumentation, the images of

∑
n≥0 T

n
1 (F2),

∑
n≥0 T

n
2 (F1) under operators

T1, T2, T
∗
1 , T

∗
2 are subspaces of HF . We need to show a similar result for T ∗1 T1(F2)
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and T ∗2 T2(F1). Let us prove it for T ∗1 T1(F2). Note that T2(T ∗2 T2(F1)) = T2(F1) ⊂ HF .
By T ∗22 T2 = T ∗2 and Proposition 3.10, we have

T ∗2 T
∗
2 T2(F1) = T ∗2 (F1) ⊂ T ∗2 (N (T ∗1 ) ∩N (T ∗2 )) = {0}.

By the definition of F1 it follows that T2(F1) ⊂ N (T1) ⊂ N (T ∗1 ) and consequently
T ∗1 (T ∗2 T2(F1)) = {0}. To show that T1T

∗
2 T2(F1) ⊂ HF , take arbitrary x ∈ F1 and

decompose it to x = x0 ⊕ T ∗2 T2x ∈ N (T2)⊕R(T ∗2 ). Since T1x = 0, then T1T
∗
2 T2x =

T1(−x0). For any z ∈ G2 we have z = T ∗1 T1z. Note that that

(x0, z) = (x0, T
∗
1 T1z) = (T1x0, T1z) = (−T1T

∗
2 T2x, T1z) =

= −(T ∗2 T2x, T
∗
1 T1z) = −(T ∗2 T2x, z) = −(T2x, T2z) = −(T2x, 0) = 0.

Since vector z has been chosen arbitrary, x0 is orthogonal to the subspace G2. Thus x0

being in N (T2) belongs to F2. The equality T1T
∗
2 T2x = T1(−x0) shows the inclusion

T1T
∗
2 T2(F1) ⊂ T1(F2) ⊂ HF . Thus HF0

reduces T1, T2.
Note that we have shown that images of HF0

under operators T1, T2, T
∗
1 , T

∗
2 are

not only subspaces of HF0 but also subspaces of HF . Therefore, since HF is a subspace
of HF0 it also reduces T1, T2. By the minimality of HF0 we have that HF = HF0 .

By Theorem 3.11, we can find the maximal subspace L described in Remark 3.8.

Corollary 3.12. A subspace

Hort := Hni 	 (H00 ⊕HF )

is the maximal T1, T2 reducing subspace orthogonal to HIs, where N (T1|Hort) ⊥
N (T2|Hort).

Proof. It is enough to show that any subspace L reducing T1, T2 and such that
N (T1|L) ⊥ N (T2|L) is orthogonal to H00 and HF . Note that by assumed orthog-
onality of kernels it follows that PN (T1)PN (T2)L = {0} and PN (T2)PN (T1)L = {0}. On
the other hand, PN (Ti) = I−T ∗i Ti. Thus an orthogonal projection on any Ti reducing
subspace commutes with PN (Ti).

The orthogonality of L to H00 follows by

{0} = PH00
PN (T1)PN (T2)L = PN (T1)PN (T2)PH00

L = PH00
L.

Similarly, {0} = PN (T1)PN (T2)PHFL and {0} = PN (T2)PN (T1)PHFL. By the def-
inition of F1, for any x ∈ F1 holds PN (T2)PN (T1)x = PN (T2)x 6= 0. Similarly for F2.
Thus PHFL is a proper subspace of HF , reduces T1, T2 and does not contain any
vector from F1 nor F2. By the minimality of HF , it follows that PHFL = {0}.

As an easy consequence we can find subspaces reducing quasinormal partial isome-
tries to pairs: an isometry – a zero operator and a zero operator – an isometry.

Theorem 3.13. Let T1, T2 ∈ L(H) be a pair of commuting quasinormal partial isome-
tries such that N (T1) ⊥ N (T2). The subspaces

H0,Is :=
⋂
n≥0

N (T1T
∗n
2 ), HIs,0 :=

⋂
n≥0

N (T2T
∗n
1 )
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are maximal reducing T1, T2 such that T1|H0,Is
= 0, T2|HIs,0 = 0 and T2|H0,Is

, T1|HIs,0
are isometries.

Proof. By the inclusion N (Ti) ⊂ N (T ∗i ) valid for quasinormal operators, every sub-
space of N (T1) reduces T1. Since H0,Is ⊂ N (T1) ⊥ N (T2), then H0,Is = T ∗2 T2(H0,Is).
For any n ≥ 1 holds

{0} = T1T
∗n−1
2 (H0,Is) = T1T

∗n−1
2 (T ∗2 T2(H0,Is)) = T1T

∗n
2 (T2(H0,Is)).

Also for n = 0 it is obvious that T2(H0,Is) ⊂ T2(N (T1)) ⊂ N (T1). Consequently,

T2(H0,Is) ⊂
⋂
n≥0

N (T1T
∗n
2 ) = H0,Is.

Note that H0,Is =
⋂
n≥0N (T1T

∗n
2 ) is the maximal subspace of N (T1) invariant for

T ∗2 . Since we have shown that H0,Is is invariant also for T2, it is the maximal subspace
of N (T1) that reduce T2. Since N (T1) is orthogonal to N (T2) it follows that H0,Is

reduces T2 to an isometry.

Denote
HG = H 	 (HIs ⊕HIs,0 ⊕H0,Is ⊕H00 ⊕HF ). (3.5)

By Lemma 3.6(iii), we have N (T1T2) ⊂ N (T ∗1 T
∗
2 ). Thus the product of quasinormal

partial isometries is a quasinormal partial isometry if it is a partial isometry.

Remark 3.14. Subspaces H00, H0,Is, HIs,0 reduce the product T1T2 to a zero
operator while HIs defined in (3.2) reduce it to an isometry. Recall that

HF =
∑
n≥1

Tn1 (F2)⊕
∑
n≥1

Tn2 (F1)⊕
(
T ∗1 T1(F2) + T ∗2 T2(F1)

)
.

Note that
∑
n≥1 T

n
1 (F2) ⊂ N (T2),

∑
n≥1 T

n
2 (F1) ⊂ N (T1). Since

T1T2T
∗
2 T2(F1) = T1T2(F1) ⊂ T2T1(N (T1)) = {0},

then T ∗2 T2(F1) ⊂ N (T1T2). Similarly, T ∗1 T1(F2) ⊂ N (T1T2). Thus HF ⊂ N (T1T2).
Consequently, a product of quasinormal partial isometries restricted to the subspace
H 	HG is a quasinormal partial isometry.

In the next paragraph it will be shown that if HG 6= {0}, then the product of
quasinormal partial isometries can be, but do not need to be, a quasinormal partial
isometry (Examples 4.2 and 4.3). Recall after [5] the following lemma.

Lemma 3.15. Let T1, T2 be partial isometries (possibly not commuting). Product
T1T2 is a partial isometry if and only if T ∗1 T1T2T

∗
2 = T2T

∗
2 T
∗
1 T1.

The subspace HIs⊕HIs,0⊕H0,Is⊕H00⊕HF reduce T1, T2 such that the product
T1T2 is a partial isometry. However, it is not the maximal such subspace.
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Proposition 3.16. Let T1, T2 be a pair of commuting quasinormal partial isometries
such that H = HG, where HG is given in (3.5). Let Hp be the maximal subspace of
N (T1T2) reducing T1, T2. Then Hp is the maximal subspace reducing T1, T2 where the
product T1T2|Hp is a quasinormal partial isometry.

Proof. Let Hp be the maximal subspace of N (T1T2) reducing T1, T2. Obviously
(T1T2)|Hp being a zero operator is a quasinormal partial isometry. Let L ⊂ H 	Hp

be any non zero subspace reducing T1, T2. Since we have assumed H = HG, then
L can not reduce T1, T2 to a pair of isometries. Consequently, N (T1T2) ∩ L 6= {0}.
Since L is orthogonal to Hp, we can choose x ∈ N (T1T2) ∩ L such that T ∗1 x or T ∗2 x
is not in N (T1T2). Assume that T1T2T

∗
2 x 6= 0. It follows that T ∗1 T1T2T

∗
2 x 6= 0. On

the other hand, x ∈ N (T2T1) ⊂ N (T ∗2 T1). Hence T2T
∗
2 T
∗
1 T1x = T2T

∗
1 T
∗
2 T1x = 0. By

Lemma 3.15 the product is not a partial isometry.

We can formulate the decomposition theorem for pairs of commuting quasinormal
partial isometries.

Theorem 3.17. Let H be a Hilbert space and T1, T2 ∈ L(H) be a pair of commuting
quasinormal partial isometries. There is a decomposition

H = HJ ⊕HF ⊕Hp ⊕Hn,

where HJ , HF , Hp, Hn are the maximal subspaces reducing operators T1, T2 such that:

(i) T1|HJ , T2|HJ are jointly quasinormal,
(ii) T1|HF , T2|HF are completely non q-compatible,
(iii) T1|Hp , T2|Hp are q-compatible, completely non jointly quasinormal and the product

T1T2 is a partial isometry,
(iv) (N (T1)∩Hn) ⊥ (N (T2)∩Hn) and there is no non trivial T1, T2 reducing subspace

of Hn, where the product T1T2 is a partial isometry.

Proof. Define HJ = HIs ⊕ H0,Is ⊕ HIs,0 ⊕ H00, where HIs defined in (3.2) reduces
T1, T2 to a pair of isometries, HIs,0, H0,Is are given by Theorem 3.13 and H00 =
N (T1)∩N (T2). By Theorem 3.2, every jointly quasinormal pair has a multiple injective
canonical decomposition. Note that an injective partial isometry is just an isometry.
On the other hand, HIs, H0,Is, HIs,0, H00 are the maximal subspaces reducing T1, T2

to suitably: a pair of isometries, T1 to a zero operator and T2 to an isometry, T1 to
an isometry and T2 to a zero operator, a pair of zero operators. Consequently, the
maximality of HJ follows from the maximality of their summands.

Define HF , Hp, HG suitably by Theorem 3.11, Proposition 3.16, formula (3.5) and
Hn = HG 	 Hp. From these results follows also that restrictions of T1, T2 to the
subspaces HF , Hp, Hn have suitable properties and H 	HJ = HF ⊕Hp ⊕Hn.

It may be surprising that in the subspace where the product of quasinormal partial
isometries is not a partial isometry we have the orthogonality of kernels.
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4. EXAMPLES

Each subspace in the decomposition in Theorem 3.17 can be non trivial. In this
paragraph we give examples of non jointly quasinormal pairs. We use the fact that in
case of partial isometries the inclusion N (T ) ⊂ N (T ∗) is equivalent to quasinormality.
The first example concerns the non q-compatible case.

Example 4.1. Let H =
⊕

n≥1Hn, where Hn = Ce ⊕ Cf for every n = 1, 2, . . .
and e, f are orthonormal vectors. Denote the canonical basis in H by ei =
(0, 0, . . . 0, e, 0, . . . ) and fi = (0, 0, . . . 0, f, 0, . . . ) with non zero value on the i-th coor-
dinate. Define:

T1(ei) = ei+1, T1(fi) = 0, for i = 1, 2, . . . ,

T2(
√

2/2e1 +
√

2/2f1) = 0, T2(
√

2/2e1 −
√

2/2f1) = f2,

T2(ei) = 0, T2(fi) = fi+1, for i = 2, 3, . . .

Obviously, T1, T2 are partial isometries. We leave to the reader to check that T1T2 =
0 = T2T1 and N (Tj) ⊂ N (T ∗j ), for j = 1, 2. It follows that T1, T2 are commuting
quasinormal operators. From (3.3) and (3.4) follows that:

G1 = {fi : i = 2, 3, . . . },

G2 = {ei : i = 2, 3, . . . },

F1 = {f1}, F2 = {
√

2/2e1 +
√

2/2f1}.

Thus H = HF .

The next example concerns the q-compatible case, where the product is quasinor-
mal – the case of the Hp subspace in the decomposition.

Example 4.2. Let H =
⊕∞

i=−∞ Cei be a Hilbert space generated by orthonormal
vectors {ei}∞i=−∞. Define operators:

T1(ei) = 0 for i ≤ −1, T1(ei) = ei+1 for i ≥ 0,

T2(ei) = ei−1 for i ≤ 0, T2(ei) = 0 for i ≥ 1.

The operators are partial isometries. By a simple calculation we can check that
N (Tj) ⊂ N (T ∗j ) for j = 1, 2. Since T1T2 = 0 = T2T1, the operators commute and
their product is a partial isometry. Moreover Gj = N (Tj) and consequently Fj = {0}
for j = 1, 2. By formulas in Theorem 3.13, also H0,Is = HIs,0 = {0}. Eventually,
H = Hp.

The last example concerns the q-compatible pair, where the product is not quasi-
normal – the case of the Hn subspace in the decomposition.
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Example 4.3. Consider a Hilbert space generated by an orthonormal basis {ei}∞i=0,
{fi, gi}∞i=1. Define operators:

T1(gi) = 0, T1(ei) = ei+1, T1(fi) = fi+1 for i ≥ 1, T1(e0) = 1/
√

2e1 + 1/
√

2f1,

T2(fi) = 0, T2(ei) = ei+1, T2(gi) = gi+1 for i ≥ 1, T2(e0) = 1/
√

2e1 + 1/
√

2g1.

One can check that the operators commute and

N (T2) =

∞⊕
i=1

Cfi, N (T1) =

∞⊕
i=1

Cgi.

Thus the kernels are orthogonal. On the other hand,

(T ∗n2 gn, e0) = (T ∗2 g1, e0) = (g1, T2e0) = (g1, 1/
√

2e1 + 1/
√

2g1) = 1/
√

2.

Note that for every x ∈ N (T1), there is n such that T ∗n2 x is not orthogonal to
e0. Since e0 is orthogonal to N (T1) then T ∗n2 x /∈ N (T1). It follows that H0,Is =⋂
n≥0N (T1T

∗n
2 ) = {0}. Similarly, HIs,0 = {0}. Thus H = HG.

Check that ‖T1T2e0‖ = ‖1/
√

2e2‖ = 1/
√

2. We will show that the product T1T2

is not a partial isometry, if we check that e0 ⊥ N (T1T2). Decompose e0 = x ⊕ y ∈
R(T ∗1 T

∗
2 )⊕N (T1T2). Note that e0 and x are orthogonal to both kernels N (T1),N (T2).

Thus y = e0−x is orthogonal to both kernels, precisely y is orthogonal to fi and gi for
i ≥ 1. Since ‖T1T2ek‖ = ‖ek+2‖ = ‖ek‖ and the product T1T2 is a contraction, then
ek ⊥ N (T1T2) for k ≥ 1. Consequently, y is orthogonal to every vector in the basis
except e0. On the other hand, y ∈ N (T1T2), while e0 is not in N (T1T2). Therefore
y = 0.

5. APPLICATION TO PAIRS OF QUASINORMAL OPERATORS

The subspaces in the decomposition Theorem 3.17 have been described by geometrical
properties of kernels. The kernel of any operator is equal to the kernel of a partial
isometry in the polar decomposition of this operator. Thus the decomposition of a
pair of quasinormal partial isometries may be used to find the decomposition of a
pair of arbitrary quasinormal operators. We will generalize Theorem 3.17 to a pair of
quasinormal operators.

Theorem 5.1. Let H be a Hilbert space and T1, T2 ∈ L(H) be a pair of commuting
quasinormal operators. There is a decomposition

H = HJ ⊕H0 ⊕Hn,

where HJ , H0, Hn are the maximal subspaces reducing T1, T2 such that:

(i) T1|HJ , T2|HJ are jointly quasinormal,
(ii) H0 ⊂ N (T1T2) and T1|H0 , T2|H0 are completely non jointly quasinormal,
(iii) Hn reduces T1, T2 to a completely non jointly quasinormal pair and the product

T1T2 can not be a zero operator on any nontrivial subspace of Hn reducing T1, T2.
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Proof. First note some property we will use in the proof. Let K ⊂ H be any subspace.
The maximal subspace of K reducing T1, T2 is an orthogonal complement of the
minimal T1, T2 reducing subspace containing K⊥. Thus the maximal subspace of K
reducing T1, T2 is the following(⋂

{L reducing T1, T2 : K⊥ ⊂ L}
)⊥

.

We will construct the subspace HJ . The commutants of T ∗i Ti and |Ti| are equal.
Thus T1, T2 are jointly quasinormal, when Ti commutes with |Tj | for i, j = 1, 2.
Consequently, the subspace reduces T1, T2 to a jointly quasinormal pair if and only
if it is a T1, T2 reducing subspace of N (|T1|T2 − T2|T1|) ∩N (|T2|T1 − T1|T2|). By the
previous argumentation, the subspace

HJ =
(⋂{

L reducing T1, T2 : (N (|T1|T2 − T2|T1|) ∩N (|T2|T1 − T1|T2|))⊥ ⊂ L
})⊥

is the maximal T1, T2 reducing subspace of N (|T1|T2 − T2|T1|) ∩ N (|T2|T1 − T1|T2|).
Thus HJ is the maximal subspace reducing T1, T2 to a jointly quasinormal pair.

We will construct the H0 subspace. The subspace

Lmax =
(⋂{

L reduce T1, T2 : N (T1T2)⊥ ⊂ L
})⊥

is the maximal subspace of N (T1T2) reducing T1, T2. By Theorem 3.2 applied to
the pair T1|HJ , T2|HJ we obtain HJ = H11 ⊕ H10 ⊕ H01 ⊕ H00. Note that H11 is
orthogonal to N (T1T2) and H01, H10, H00 ⊂ N (T1T2). Since H01, H10, H00 reduce
T1, T2, it follows they are also subspaces of Lmax. Consequently, H0 = Lmax	 (H10⊕
H01 ⊕H00) is the maximal subspace of N (T1T2) reducing T1, T2 to a completely non
jointly quasinormal pair.

The subspace Hn := H 	 (HJ ⊕ H0) have required properties since it is the
orthogonal complement of HJ ⊕H0.

Theorem 5.1 has been proved independently to Theorem 3.17. However, for fur-
ther decompositions we will use some of the previous results on quasinormal partial
isometries.

Remark 5.2. Let T1, T2 ∈ L(H) be commuting quasinormal operators and L ⊂ H
be a subspace reducing T1, T2 such that T1|L = 0 or T2|L = 0. Restrictions T1|L, T2|L
are jointly quasinormal since suitable products are equal to 0. Therefore, to find a
subspace reducing T1, T2 to a pair where at least one of operators is a zero operator,
it is enough to check only those subspaces where they are jointly quasinormal.

The next result generalize some formulas to pairs of quasinormal operators.

Theorem 5.3. Let T1, T2 ∈ L(H) be a pair of commuting quasinormal operators,
where T1 = W1|T1|, T2 = W2|T2| are the polar decompositions. Denote by HJ the
maximal subspace reducing T1, T2 to a jointly quasinormal pair and by H0,Is, HIs,0 the
maximal subspaces reducing W1,W2 to pairs: a zero operator – an isometry, an isome-
try – a zero operator. Then H0,Is∩HJ , HIs,0∩HJ are the maximal subspaces reducing
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T1, T2 to pairs: a zero operator – an injective operator, an injective operator – a zero
operator.

Proof. Let L be any subspace reducing T1 to a zero operator and T2 to an injective
operator. By Remark 3.3 and properties of the polar decomposition, the subspace L
reducesW1 to a zero operator andW2 to an isometry. Thus L ⊂ H0,Is. By Remark 5.2,
we have the inclusion L ⊂ HJ . Thus every subspace reducing T1 to a zero operator
and T2 to an injective operator is a subspace of H0,Is ∩HJ .

By Remark 3.3, the subspace HJ reduces W1,W2 and consequently H0,Is ∩HJ

reduces W1,W2, since it is an intersection of such subspaces. Denote K =
Span{|T2|n(H0,Is∩HJ) : n ≥ 0}. Since K ⊂ HJ , it follows that T1|T2|n(H0,Is∩HJ) =
|T2|nT1(H0,Is∩HJ) = {0}. ThereforeK reduces T1 to a zero operator. SinceH0,Is∩HJ

reduces W2 it follows that

T2|T2|n(H0,Is ∩HJ) = |T2|n+1W2(H0,Is ∩HJ) ⊂ |T2|n+1(H0,Is ∩HJ).

Similarly, T ∗2 |T2|n(H0,Is ∩HJ) ⊂ |T2|n+1(H0,Is ∩HJ). Therefore K reduces T2 to an
injective operator. By the first part of the proof K ⊂ H0,Is∩HJ . The reverse inclusion
follows by the definition of K. Thus K = H0,Is ∩HJ reduces T1, T2.

It can be shown that commutativity of jointly quasinormal operators is inherited
on partial isometries in their polar decompositions. Unfortunately, it is not true for
arbitrary pairs of quasinormal operators. Another problem is that a subspace reducing
a partial isometry in the polar decomposition of T does not need to reduce T. Note
the following.

Lemma 5.4. Let T1 = W1|T1|, T2 = W2|T2| be the polar decompositions of commuting
quasinormal operators. Denote by L a subspace of N (T1T2).

(i) If L reduces T1, T2, then L ⊂ N (W1W2) and L reduces W1,W2.
(ii) If L reduces W1,W2 and N (Ti) ⊂ L for i = 1, 2, then L reduces T1, T2.

Proof. To show (i) take arbitrary x ∈ L such that x = x0⊕|T2|y, where x0 ∈ N (W2) =
N (|T2|) and y is orthogonal to N (|T2|). Since L reduces T1, T2, by Remark 3.3 it
reduces also W1,W2. It follows that W2x = T2y ∈ L and consequently y = T ∗2W2x ∈
L ⊂ N (T1T2) = N (W1T2). On the other hand, W1W2x = W1T2y = 0. Since x has
been taken arbitrary in a dense set in L, we have the thesis.

To show (ii) it is enough to prove that L is |T1|, |T2| invariant. By N (W1) =
N (|T1|), it follows thatW1 is an isometry on R(|T1|). Thus |T1| = W ∗1W1|T1| = W ∗1 T1

and consequently

|T1|(L) = W ∗1 T1(L) ⊂W ∗1 T1(N (T1T2)) ⊂W ∗1 (N (T2)) ⊂W ∗1 (L) ⊂ L.

It follows that L is |T1| invariant. Similarly, L is |T2| invariant which finishes the
proof.



436 Zbigniew Burdak

As a consequence of Lemma 5.2, we obtain the following corollary.

Corollary 5.5. Denote by T1 = W1|T1|, T2 = W2|T2| the polar decompositions of com-
muting quasinormal operators. If L ⊂ N (T1T2) reduces T1, T2, then L ⊂ N (W1W2)
and W1,W2 commute on L.

Proof. By the first part of the Lemma 5.4 and commutativity of T1, T2, we have
W1W2|L = 0 = W2W1|L.

As it was shown above, with appropriate assumptions subspaces reducing W1,W2

reduce also T1, T2. If necessary, some of subspaces in the decomposition ofW1,W2 can
be treated as generators of subspaces reducing T1, T2. By Corollary 5.5, commutativity
of T1, T2 implies commutativity of W1,W2 on the subspace H0 in Theorem 5.1. By
Theorem 3.17 applied to restrictions of operators to the subspace H0, we obtain the
decomposition H0 = HF ⊕ Hp. Since H0 is a subspace of N (W1W2) it follows that
Hn = {0}. If necessary, we can extend HF to the minimal subspace reducing T1, T2.
In this way we obtain the maximal subspace reducing T1, T2 to a completely non
q-compatible pair.

For any operator T = W |T | we have N (T ) = N (|T |). For the product we do
not have the similar property, not always N (T1T2) = N (|T1||T2|). On some of the
subspaces in Theorem 3.17 the above equality never holds.

Remark 5.6. Consider a pair of commuting quasinormal operators T1 = W1|T1|,
T2 = W2|T2|, where W1,W2 are partial isometries. Assume that HF 6= {0}, where
HF is the subspace defined in Theorem 3.11. Since T1, T2 are not jointly quasinormal
on HF , there is x ∈ HF such that T2|T1|x 6= |T1|T2x or T1|T2|x 6= |T2|T1x. On
the other hand, by N (T1) = N (|T1|), it follows that N (T1T2) = N (|T1|T2). Since
HF ⊂ N (T1T2), then |T1|T2x = 0 and 0 6= T2|T1|x = W2|T2||T1|x. Consequently,
|T2||T1|x 6= 0 and N (T1T2) 6= N (|T2||T1|). The similar result can be obtained if
Hp 6= {0}.

As a corollary we obtain the following proposition.

Proposition 5.7. Let T1, T2 be commuting quasinormal operators and their partial
isometries in the polar decompositions W1,W2 also commute. Then the following con-
ditions are equivalent:

(i) T1, T2 have a multiple injective canonical decomposition,
(ii) W1,W2 have a multiple isometric canonical decomposition,
(iii) N (T1T2) = N (|T1||T2|) and the product W1W2 is a partial isometry.

Proof. We have (i) ⇒ (ii) by Remark 3.3.
We will show implication (iii) ⇒ (i). Using the notation of Theorem 3.17 applied

to W1,W2 we have Hn = {0} and by Remark 5.6 also HF = Hp = {0}. We need
to show that subspaces H00, H0,Is, HIs,0, HIs reduce T1, T2. By Lemma 5.4(ii), the
subspace H0,Is ⊕ HIs,0 ⊕ H00 reduces T1, T2. Consequently, HIs reduces T1, T2. By
the inclusion N (Ti) ⊂ N (T ∗i ) every subspace of N (Ti) reduces Ti for i = 1, 2. Since
each of the operators T1, T2 is zero on two of the subspaces H00, H0,Is, HIs,0, then
it is reduced by these two subspaces and consequently by all three subspaces. The
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equality N (Ti) = N (Wi) for i = 1, 2 shows that the obtained decomposition of T1, T2

is a multiple injective canonical decomposition.
We will show implication (ii)⇒ (iii). Consider the decomposition of W1,W2 given

by Theorem 3.17. It follows immediately that productW1W2 is a partial isometry. We
need to show thatN (T1T2) = N (|T1||T2|). Similarly like in the proof of the implication
(iii) ⇒ (i) the subspaces in the decomposition reduce also T1, T2. Since (iii) trivially
holds on H00 and HIs, we can assume for convenience that H = H0,Is ⊕ HIs,0 and
consequently that H = N (T1T2). An arbitrary x can be decomposed to x = x1 +x2 ∈
H0,Is ⊕HIs,0. Since

|T2|x = |T2|W ∗2W2x1 + |T2|x2 = T ∗2W2x1 ∈ H0,Is ⊂ N (T1) = N (|T1|),

then |T1||T2|x = 0.

REFERENCES

[1] H. Bercovici, R.G. Douglas, C. Foias, Canonical models for bi-isometries, Operator
Theory: Advances and Applications 218 (2012), 177–205.

[2] A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953).

[3] Z. Burdak, On decomposition of pairs of commuting isometries, Ann. Polon. Math. 84
(2004), 121–135.

[4] X. Catepillán, M. Ptak, W. Szymański, Multiple Canonical decompositions of families
of operators and a model of quasinormal families, Proc. Amer. Math. Soc. 121 (1994),
1165–1172.

[5] P.R. Halmos, L.J. Wallen, Powers of partial isometries, J. Math. Mech. 19 (1970),
657–663.

[6] K. Horak, V. Müller, On the structure of commuting isometries, Commentatores Math-
ematicae Univ. Carolinae 28 (1987), 165–171.

[7] A. Lubin, Weighted shifts and commuting normal extentions, J. Aust. Math. Soc.
(Ser. A) 27 (1979) 1, 17–26.

[8] D. Popovici, A Wold-type decomposition for commuting isometric pairs, Proc. Amer.
Math. Soc. 132 (2004), 2303–2314.

[9] M. Slocinski, On the Wold-type decomposition of a pair of commuting isometries, Ann.
Polon. Math. 37 (1980), 255–262.

[10] L. Suciu, Some invariant subspaces for A-contraction and applications, Extracta Math-
ematicae 21 (2006), 221–247

[11] H. Wold, A study in the analysis of stationary time series, Uppsala 1938.



438 Zbigniew Burdak

Zbigniew Burdak
rmburdak@cyf-kr.edu.pl

University of Agriculture
Department of Applied Mathematics
ul. Balicka 253c, 30-198 Krakow, Poland

Received: July 17, 2012.
Revised: February 7, 2013.
Accepted: February 18, 2013.


