PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the effects of preheated wall/plates in microthruster systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, effects of pre-heated walls/plates on microthrusters performance are studied using a DSMC/NS solver. Three microthruster configuration types are studied. Type 1 is a cold gas microthrster. Microthruster type 2 has pre-heated walls. Pre-heated plates are inserted inside the chamber of microthruster type 3. It is observed that in microthruster type 2 the flow is accelerated and the specific impulse is elevated. However, by insertion of the pre-heated plates in microthruster type 3, viscous effects have stronger negative influence and the thrust is decreased. By implementing temperature gradients on walls in type 2 and on plates in type 3, it is observed that a higher temperature gradient enhances performance parameters of microthruters. Among all types of microthrusters, microthruster type 2 with pre-heated walls has the highest thrust and specific impulse. Microthruster type 3 with a temperature gradient of 300-500K has the minimum thrust due to a considerable decrease in the mass flow rate.
Rocznik
Strony
713--725
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Aerospace Faculty, Malek Ashtar University of Technology, Tehran, Iran
autor
  • Aerospace Faculty, Malek Ashtar University of Technology, Tehran, Iran
autor
  • Aerospace Faculty, Malek Ashtar University of Technology, Tehran, Iran
Bibliografia
  • 1. Alexeenko A., Levin D., Gimelshein S., Collins R., Markelov G., 2002, Numerical simulation of high-temperature gas flows in a millimeter-scale thruster, Journal of Thermophysics and Heat Transfer, 16, 1, 10-16
  • 2. Bayt R.L., 1999, Analysis, fabrication and testing of a MEMS-based micropropulsion system, PhD, Aerospace Computational Design Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
  • 3. Bird G., 2007, Sophisticated DSMC, Notes Prepared for a Short Course at the DSMC07 Meeting, Santa Fe, USA
  • 4. Bird G.A., 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, USA, Oxford Science Publications
  • 5. Boyd I.D., Chen G., Candler G.V., 1995, Predicting failure of the continuum fluid equations in transitional hypersonic flows, Physics of Fluids, 7, 1, 210-219
  • 6. Boyd I.D., Penko P.F., Meissner D.L., DeWitt K.J., 1992, Experimental and numerical investigations of low-density nozzle and plume flows of nitrogen, AIAA Journal, 30, 10, 2453-2461
  • 7. Darbandi M., Roohi E., 2011, Study of subsonic-supersonic gas flow through micro/nanoscale nozzles using unstructured DSMC solver, Microfluidics and Nanofluidics, 10, 2, 321-335
  • 8. Gad-el-Hak M., 2005a, MEMS: Applications, USA, CRC Press
  • 9. Gad-el-Hak M., 2005b, MEMS: Introduction and Fundamentals, USA, CRC Press
  • 10. Hadjiconstantinou N.G., 2000, Analysis of discretization in the direct simulation Monte Carlo, Physics of Fluids, 12, 10, 2634-2638
  • 11. Hitt D.L., Zakrzwski C.M., Thomas M.A., 2001, MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition, Smart Materials and Structures, 10, 6, 1163
  • 12. Ivanov M., Markelov G., Ketsdever A., Wadsworth D., 1999, Numerical study of cold gas micronozzle flows, 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, U.S.A., American Institute of Aeronautics and Astronautics
  • 13. Jafryt Y., Beukelt J.V., 1994, Investigation of nozzle and plume expansions of a small helium thruster, Rarefied Gas Dynamics: Space Science and Engineering, 160, 136
  • 14. Janson S.W., Helvajian H., Hansen W.W., Lodmell J., 1999, Microthrusters for nanosatellites, Second International Conference on Integrated Micro Nanotechnology for Space Applications, Pasadena
  • 15. Karniadakis G.E., Beskok A., Aluru N., 2006, Microflows and Nanoflows: Fundamentals and Simulation, Springer New York
  • 16. Kundu P., Sinha A.K., Bhattacharyya T.K., Das S., 2013, Nanowire embedded hydrogen peroxide monopropellant MEMS thruster, Journal of Microelectromechanical Systems, 22, 2, 406-417
  • 17. Le M., Hassan I., Esmail N., 2006, DSMC simulation of subsonic flows in parallel and series microchannels, Journal of Fluids Engineering, 128, 6, 1153-1163
  • 18. Le N.T., Roohi E., 2015, A new form of the second-order temperature jump boundary condition for the low-speed nanoscale and hypersonic rarefied gas flow simulations, International Journal of Thermal Sciences, 98, 51-59
  • 19. Le N.T., White C., Reese J.M., Myong R.S., 2012, Langmuir-Maxwell and Langmuir-Smoluchowski boundary conditions for thermal gas flow simulations in hypersonic aerodynamics, International Journal of Heat and Mass Transfer, 55, 19, 5032-5043
  • 20. Liou W., Fang Y., 2000, Implicit boundary conditions for direct simulation Monte Carlo method in MEMS flow predictions, CMES – Computer Modeling in Engineering and Sciences, 1, 4, 119-128
  • 21. Liu M., Zhang X., Zhang G., Chen Y., 2006, Study on micronozzle flow and propulsion performance using DSMC and continuum methods, Acta Mechanica Sinica, 22, 5, 409-416
  • 22. Mihailovic M., Mathew T., Creemer J., Zandbergen B., Sarro P., 2011, MEMS silicon-based resistojet micro-thruster for attitude control of nano-satellites, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, IEEE: 262-265
  • 23. Milligan M.W., 1964, Nozzle characteristics in the transition regime between continuum and free molecular flow, AIAA Journal, 2, 6, 1088-1092
  • 24. Moss J.N., Bird G.A., 2005, Direct simulation Monte Carlo simulations of hypersonic flows with shock interactions, AIAA Journal, 43, 12, 2565-2573
  • 25. Nance R.P., Hash D.B., Hassan H., 1998, Role of boundary conditions in Monte Carlo simulation of microelectromechanical systems, Journal of Thermophysics and Heat Transfer, 12, 3, 447-449
  • 26. O’Hare L., Lockerby D.A., Reese J.M., Emerson D.R., 2007, Near-wall effects in rarefied gas micro-flows: some modern hydrodynamic approaches, International Journal of Heat and Fluid Flow, 28, 1, 37-43
  • 27. OPENFOAM, 2014), OPENFOAM: The Open Source CFD Toolbox
  • 28. Osiander R., Darrin M.A.G., Champion J.L., 2005, MEMS and Microstructures in Aerospace Applications, USA, CRC Press
  • 29. Pfeiffer M., Mirza A., Fasoulas S., 2013, A grid-independent particle pairing strategy for DSMC, Journal of Computational Physics, 246, 28-36
  • 30. Platt D., 2002, A monopropellant milli-Newton thruster system for attitude control of nanosatellites, AIAA/USU Conference on Small Stellites, Utah
  • 31. Rae W.J., 1971, Some numerical results on viscous low-density nozzle flows in the slender-channel approximation, AIAA Journal, 9, 5, 811-820
  • 32. Roohi E., Darbandi M., Mirjalili V., 2009, Direct simulation Monte Carlo solution of subsonic flow through micro/nanoscale channels, Journal of Heat Transfer, 131, 9, 092402
  • 33. Rothe D.E., 1971, Electron-beam studies of viscous flow in supersonic nozzles, AIAA Journal, 9, 5, 804-811
  • 34. Schwartzentruber T.E., Scalabrin L.C., Boyd I.D., 2007, A modular particlecontinuum numerical method for hypersonic non-equilibrium gas flows, Journal of Computational Physics, 225, 1, 1159-1174
  • 35. Sun Z.-X., Li Z.-Y., He Y.-L., Tao W.-Q., 2009, Coupled solid (FVM)-fluid (DSMC) simulation of micro-nozzle with unstructured-grid, Microfluidics and Nanofluidics, 7, 5, 621-631
  • 36. Sun Z.-X., Tang Z., He Y.-L., Tao W.-Q., 2011, Proper cell dimension and number of particles per cell for DSMC, Computers and Fluids, 50, 1, 1-9
  • 37. Torre F.L., Kenjeres S., Kleijn C.R., Moerel J.-L.P., 2010, Effects of wavy surface roughness on the performance of micronozzles, Journal of Propulsion and Power, 26, 4, 655-662
  • 38. Wang M., Li Z., 2004, Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method, International Journal of Heat and Fluid Flow, 25, 6, 975-985
  • 39. Wu J., Lee W., Lee F., Wong S., 2001, Pressure boundary treatment in internal gas flows at subsonic speed using the DSMC method, Rarefied Gas Dynamics: 22nd International Symposium, USA, American Institute of Physics, 408-416
  • 40. Xie C., 2007, Characteristics of micronozzle gas flows, Physics of Fluids, 19, 3, 037102
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0db1d24a-ec6c-4f45-adea-315da89839a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.