PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Process optimization variables for direct metal laser sintering

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Manufacturing is crucial to creation of wealth and provision of quality of life. Manufacturing covers numerous aspects from systems design and organization, technology and logistics, operational planning and control. The study of manufacturing technology is usually classified into conventional and non-conventional processes. As it is well known, the term "rapid prototyping" refers to a number of different but related technologies that can be used for building very complex physical models and prototype parts directly from 3D CAD model. Among these technologies are selective laser sintering (SLS) and direct metal laser sintering (DMLS). RP technologies can use wide range of materials which gives possibility for their application in different fields. RP has primary been developed for manufacturing industry in order to speed up the development of new products (prototypes, concept models, form, fit, and function testing, tooling patterns, final products - direct parts). Sintering is a term in the field of powder metallurgy and describes a process which takes place under a certain pressure and temperature over a period of time. During sintering particles of a powder material are bound together in a mold to a solid part. In selective laser sintering the crucial elements pressure and time are obsolete and the powder particles are only heated for a short period of time. SLS uses the fact that every physical system tends to achieve a condition of minimum energy. In the case of powder the partially melted particles aim to minimize their in comparison to a solid block of material enormous surface area through fusing their outer skins. Like all generative manufacturing processes laser sintering gains the geometrical information out of a 3D CAD model. This model is subdivided into slices or layers of a certain layer thickness. Following this is a revolving process which consists of three basic process steps: recoating, exposure, and lowering of the build platform until the part is finished completely.
Rocznik
Strony
38--51
Opis fizyczny
Bibliogr. 65 poz., rys., tab., wykr.
Twórcy
  • Mierzejewska Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Biomedical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
  • 1. Levy G.N., Seliindel R, Knith J.P.: Rapid manufacturing and rapid tooling with layer manufacturing technologies: state of the art and future perspectives. C’ERP Annals 52(2) (2003), 589-609.
  • 2. Miecielica M.: Analiza wybranych metod szybkiego prototypowania, PW IIPiB (2007).
  • 3. Ruszaj A.: Niekonwencjonahie metody wytwarzania elementów maszyn i narzędzi (1999).
  • 4. Kruth J.P., Leu M. C., Nakagawa T.: Progress in additive manufacturing and rapid prototyping, CIRP Annals 47 (2) (1998), 525-540.
  • 5. Gibson I., Rosen D. W., Stucker B.: Additive Manufacturing Technologies. Rapid Prototyping to Direct Digital Manufacturing (2010).
  • 6. Bercel P., C’hezan H., Bale N.: Tlie appheation of Rapid Prototyping Technologies for manufacturing the custom implants. ESAFORM Conference, Cluj-Napoca, Romania (2005).
  • 7. Raos P., Stoić A., Lucić M.: Rapid prototyping and rapid machining of medical implants. 4th DAAAM International Conference on Advanced Technologies for Developing Countries, Slavonski Brod, Croatia (2005).
  • 8. Cruz F.: Selective Laser Sintering of Customised Medical Implants Using Biocomposite Matenals. Tehmcki vjesnik 10 (2) (2003), 23-27.
  • 9. Das S.: Physical aspects of process control in selective laser sintering of metals. Advanced Engmeering Materials (2003), 5: 701-711.Childs T.H.C., Hauser C., Badrossamay M.: Selective laser sintering (melting) of stainless and tool steel powders: experiments and modeling, Proc. IMecliE part B, J. Engineering Manufacture 219 (2005), 339-357.
  • 10. Dimov S., Pham D.T., et al.: Rapid tooling applications of the selective laser sintering process, Assembly Automation 21(4) (2001), 296-302.
  • 11. Senthilkumaran K., Pandey P. M., Rao P. V. M.: Influence of building strategies on the accuracy of parts in selective laser sintering, Materials and Design 30 (2009), 2946-2954.
  • 12. Lu L., Full J. Y. H., Wong Y. S.: Laser-induced materials and processes for rapid prototyping. Springer Science & Business Media (2010), 89-142.
  • 13. Wang X. C., Laoui T., Bonse J., Kruth J. P., Lauwers B., Froyen L.: Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation, The Intemation Journal of Advanced Manufacturing Technology 19 (2002), 351-357.
  • 14. Kruth J.P., Mercelis P., Van Vaerenbergli J., Froyen L., Rombouts M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J. 55(1) (2005), 26- 36.
  • 15. Kruth J. P., Mercelis P., Froyen L., Rombouts M.: Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid prototyping journal 11 (1) (2005), 26-36.
  • 16. Dobrzański L. A.: Introduction to Materials Science. Silesian University of Technology (2007).
  • 17. Bednarczyk I, Lesz S.. Puchała M.. Szczucka - Lasota B.. Warchoł A.: Nauka o materiałach i mechanika. Wyższa Szkoła Zarządzania Ochroną Pracy (2010).
  • 18. Szucki T.: Inżynieria Materiałowa: materiałoznawstwo. Oficyna Wydawnicza Politechniki Warszawskiej (1999).
  • 19. Storch S.. Nellessen D.. Schaefer G. Reiter R_:Selective laser sintering: qualifying analysis of metal based powder systems for automotive applications. Rapid Prototyping Journal 9 (2003). 240-252.
  • 20. Kruth J.P. Froyen L., Van Vaerenbergh J. Mercelis P. Ronibouts M. Lauwers B.: Selective laser melting of iron based powder. J. Materials Processing Technology 149(1-3) (2004). 616 - 622.
  • 21. Beaman. J. J.: Solid Freeform Fabrication. A New Direction in Manufacturing (1997). 212- 216.
  • 22. German. R. M.: Powder Metallurgy Science. Second Edition. Metal Powder Industries Federation Press (1994), 24-35.
  • 23. Agawals. M.K. BourelL D.L. Beaman J.J. Marcus. H.L. and Barlow, J.W.: Direct selective laser sintering of metals. Rapid Prototyping Journal 1(1) (1995). 26-36.
  • 24. Laoui. T. Froyen L., Kruth. J.P.: Influence of powder parameters on the selective laser sintering of tungsten caibide-cobalt. Proceedings of the 7th European Conference on Rapid Prototyping & Manufacturing (1998), 271-279.
  • 25. Nelson J.C. McAlea. K. amd Gray. D.: Improvements in SLS Part Accuracy. Solid Freeform Fabrication Symposium Proceedings. The University of Texas (1995), 159-169.
  • 26. Berzins. M. Childs. T. H. C., Dalgamo. K. W. and Stein G.: Densification and distortion in selective laser sintering of polycarbonate parts. Solid Freeform Fabrication Symposium University of Texas (1995). 196-203.
  • 27. Childs. T. H. C., Ryder. G. R. and Barzins. M.: Experimental and theoretical studies of selective laser sintering. Rapid Product Development (1997), 132-141.
  • 28. Tontowi. A.E. and Childs. T.H.C.: Density Prediction of crystalline Polymer Sintered Parts at Various Powjier Bed Temperatures (Selective Laser Sintering Case). Rapid Prototyping Journal 7(3) (2001). 180-184.
  • 29. Kandis. M. Buckle}- and Bergman T. L.: Observation. Prediction and correlation of geometric shape evolution induced by Non-isothermal sintering of polymer powder. ASME J. Heat Transfer 119 (1997), 824-831.
  • 30. Zhang. Y. W., Faghri. A.Buckley. C.W., and Bergman. T.L.: Three- Dimensional Sintering of Two-Component Metal Powders with Stationary’ and Moving Laser Beams. ASME J. Heat Transfer 122(1), (2000), 150-158.
  • 31. Frank. D. Fadel. G.: Expert system based selection of the preferred direction of build for rapid prototyping processes. Journal of Intelligent Manufacturing 6 (1995), 339-345.
  • 32. Kamash. T. and Flynn. D.: Build Time Estimator for Stereolithography Machines - A Preliminary Report, report released by Prototype Express. (1995).
  • 33. Rock. S.J. and Woźny. M.J.: A flexible file format for solid freeform fabrication. Solid Freeform Fabrication Proceedings (1991), 1-12.
  • 34. Guduri. S.. Crawford, R.H. and Beaman. J.J.. "Direct generation of contour files from constructive solid geometry representations. Solid Freeform Fabrication Proceedings (1993). 291-302.
  • 35. Vuyyuru. P.. Kirschman. C., Fadel, G.M.. Bagchi. A. and Jara-Almonte. C.: A NURBS based approach for rapid prototyping realization", proceedings pf Fifth International Conference on Rapid Prototyping (1994), 229-240.
  • 36. Jacobs. P.F.: The Effects of Shrinkage Variation On Rapid Tooling Accuracy. Materials & Design 21(2), (2000), 127-136.
  • 37. Jacobs. P.: Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. SME. MI, (1992).
  • 38. Andrew, C. L.. David. W. R.: The Effect Of Layer Orientation on The Tensile Properties of Net Shape Parts Fabricated in Stereolithography. Solid Freefonn Fabrication Proceedings (2003), 289-300.
  • 39. Subramanian. P.K. Vail, N.K.. Barlow. J.W., and Marcu. H.L.: Anisotropy' in Alumina Produced by SLS. Solid Freeform Fabrication Proceedings (1994), 330-338.
  • 40. Badrinarayan. B. and Barlow J.W.: Effect of Processing Parameters in SLS of Metal-Polymer Powders. Solid Freefonn Fabrication Proceedings (1995), 55-63.
  • 41. David C.T.. Richard H.C., Optimizing Part Quality with Orientation Solid Freefonn Fabrication Proceedings. 1995. 362-368.
  • 42. Gibson. I. and Shi. D. P.: Material Properties and Fabrication Parameters in Selective Laser Sintering Process. Rapid Prototyping Journal 3(4) (1997), 129-136.
  • 43. Corbel, S.. Hinczew'ski. C. and Chartier. T.: Mechanical Properties of Ceramic Parts Made byr Stereolithography' and Sintering Process. European conference on rapid prototyping and manufacturing (1999), 115-123.
  • 44. Williams. J.D. and Dec kard. C.R.: Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping Journal 4(2), (1998). 90-100.
  • 45. Williams. J.D. Miller. D. and Deckard. C.R.: Selective Laser Sintering Part Strength as Function of Andrew Number. Scan Rate and Spot Size. Proceedings of Solid Freeform Fabrication Symposium (1996). 549-557.
  • 46. Gibson. I. and Shi. D. P.: Material Properties and Fabrication Parameters in Selective Laser Sintering Process. Rapid Prototyping Journal 3(4) (1997), 129-136.
  • 47. Richard. H. C.: Computer Aspects of Solid Freeform Fabrication Geometry’. Process Control, and Design. Solid Freefonn Fabrication Proceedings (1993). 102-112.
  • 48. Tsai S. W. and Wu E. M.: A general theory of strength for anisotropic materials, journal of composite materials 5 (1971), 58-68.
  • 49. Dolenc. W. and Makela, I.: Slicing procedure for layered manufacturing techniques. Computer-Aided Design 26(2) (1994), 119-126.
  • 50. Kulkami. P. and Dutta. D.: Adaptive slicing for parametrizable surfaces for layered manufacturing. Proceedings of ASME Design Automation Conference (1995), 211-217
  • 51. Tyberg, J. and Bohn. J. H.: Local adaptive slicing. Rapid Prototyping Journal 4(3) (1998). 118-127.
  • 52. Cheng. W., Fuh. J. Y. H. Nee, A. Y. C., Wong. Y. S., Loh. H. T. and Miyazawa, T.: Multi¬objective optimization of the part-building orientation in stereolithgraphv. Rapid Prototyping Journal 1(4) (1995), 12-23.
  • 53. Frank, D., Fadel, G.: Expert system based selection of the preferred direction of build for rapid prototypmg processes. Journal of Intelligent Manufacturing 6 (1995), 339-45.
  • 54. McClurkin, J.E., and Rosen, D.W.: Computer-aided build style decision support for stereolithography. Rapid Prototyping Journal 4(1) (1998), 4-13.
  • 55. Kamesh T., Georges F., Amit B., and Nadim A.: Efficient slicing for layered Manufacturing, Rapid Prototyping Journal 4(4) (1998), 19-35.
  • 56. Yu, G.B., and Noble, D.: The development of a laser build-time calculation program using stereolithographic apparatus (SLA), Proceedings of the 2nd European Conference on Rapid Prototyping and Manufacturing, (1993).
  • 57. Ahn, S. H., Montero, M., Odell, D., Roundy, S., and Wright, P. K..: Anisotropic Material Properties of Fused Deposition Modeling (FDM) ABS, Rapid Prototyping Journal 8(4) (2002), 248-257.
  • 58. Williams, J.D., Miller, D., and Deekard, C.R.: Selective Laser Sintering Part Strength as Function of Andrew Number, Scan Rate and Spot Size, Proceedings of Solid Freeform Fabncation Symposium (1996), 549-557.
  • 59. Sun, M. M., and Beaman, J. J.: A Three Dimensional Model for Selective Laser Sintering, Proceedmgs of Solid Freeform Fabrication Symposium (1995), 102-109.
  • 60. Nikolay K. T., Maxim K. A., Audrey V. G., Victor, I. T., Taliar L. and Ludo F.: Mechanisms of selective laser sintering and heat transfer in Ti powder, Rapid prototyping journal 9(5) (2003), 314-326.
  • 61. Manriquez-Frayre, J. A., and Bourell, D. L.: Selective Laser Sintering of Cu- Pb/Sn Solder Powders, The University of Texas at Austin, Solid Freeform Fabrication Proceedings (1991), 236-244.
  • 62. Nelson, J.C.: Selective laser sintering: a definition of the process and an empirical sintering model, PliD dissertation. University of Texas, (1993).
  • 63. Andrew, C. L., David, W. R.: The Effect Of Layer Orientation on The Tensile Properties of Net Shape Parts Fabricated in Stereolithography, Solid Freeform Fabrication Proceedmgs (2003), 289-300.
  • 64. Nelson, J., Xue, S., Samuel. Barlow, J. W., Beaman, J. J., Marcus, H. L., Bourell, D. L.: Model of the selective laser smtermg of bisphenol-A polycarbonate, Industrial & Engineering Chemistry Research 32(10) (1993), 2305-2317.
  • 65. Miller, D., Deekard, C., Williams, J.: Variable beam size SLS workstation and enhanced SLS model. Rapid Prototypmg Journal 3(1) (1997), 4-11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0db0e494-0af5-49d5-9e55-ec2c36903129
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.