
Computer Science • 24(4) 2023 https://doi.org/10.7494/csci.2023.24.4.5539

Anna Gajos-Balińska
Grzegorz M. Wójcik
Przemys law Stpiczyński

HYBRID IMPLEMENTATION OF
THE FASTICA ALGORITHM
FOR HIGH-DENSITY EEG
USING THE CAPABILITIES OF
THE INTEL ARCHITECTURE
AND CUDA PROGRAMMING

Abstract High-density electroencephalographic (EEG) systems are utilized in the study

of the human brain and its underlying behaviours. However, working with

the EEG data requires a well-cleaned signal, which is often obtained using

independent component analysis (ICA) methods. The longer the calculation

time for these types of algorithms is, the more data is obtained. This paper

presents a hybrid implementation of the fastICA algorithm that uses parallel

programming techniques (libraries and extensions of the Intel processors and

CUDA programming), which results in a significant acceleration of execution

time on selected architectures.

Keywords ICA, EEG, BLAS, MKL, OpenMP, Intel Cilk Plus, CUDA

Citation Computer Science 24(4) 2023: 455–472

Copyright © 2023 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

455

https://doi.org/10.7494/csci.2023.24.4.5539
https://creativecommons.org/licenses/by/4.0/

456 Anna Gajos-Balińska, Grzegorz M. Wójcik, Przemys law Stpiczyński

1. Introduction

EEG systems are commonly used in research on brain function as well as to inves-

tigate the neural basis of behaviour or cognition. Unlike the other brain imaging

techniques such as functional magnetic resonance imaging (fMRI) or positron emis-

sion tomography (PET), which have a relatively low spatial resolution, high-density

EEG systems can provide an accurate view of brain activity, with an electrode resolu-

tion of up to several hundred sensors. These systems have a wide range of applications

in such fields as neuroscience, psychology, and medicine [22, 24–27]. However, thor-

ough cleaning of the signal of artifacts (parts of the signal that do not originate

from the brain) is crucial for its further analysis, however, this process can be time-

consuming [1,4,13]. Additionally, manufacturers of EEG systems do not always meet

the expectations of researchers and the methods available in their tools are not satis-

factory enough. The most frequently used methods of signal purification are ICA-type

algorithms [2,3, 11,23] and they are most often available in other external programs,

not adapted to larger batches of data. ICA is a powerful tool for analyzing and in-

terpreting complex data sets and has a wide range of applications in such fields as

machine learning or data mining. However, due to the iterative nature of ICA-type

algorithms, their computation time can be daunting.

Figure 1. 256-electrode cap in EEG Laboratory

For example, for a256-electrode EGI system with 1000 Hz sampling (see Fig. 1,

[17]), it can take several hours to process a 10-minute study. This paper describes

an implementation that accelerates these calculations by exploiting the capabilities of

multi-core architectures. Initially, the implementation was based on parallel calcula-

tions on CPU cores using the Intel processors, and over time it was enriched with ma-

Hybrid implementation of the fastICA algorithm for high-density EEG. . . 457

trix calculations using the CUBLAS library, which is available through programming

in CUDA for the NVIDIA graphics cards [7–10]. The paper presents improvement

that transfers more calculations to the graphics card, thus reducing the calculation

time even further. The calculation time obtained in this way was compared with the

implementation time without the CUDA support.

2. Materials and methods

2.1. Independent component analysis

Independent component analysis (ICA) is a statistical technique used to separate

independent sources that affect data. In the context of EEG the set of independent

components can be interpreted as the sources of brain activity that generated the

recorded signal. ICA belongs to a family of methods called blind source separation

(BSS) [2].

The BSS problem can be represented by the equation:

S = WX

where S ∈ RCxM is the matrix of C components for M samples, W ∈ RCxN is

the transition matrix with the weight vectors between each signal and electrode and

X ∈ RNxM is the data from N electrodes. W is the unknown separation matrix that

will satisfy this equation.

The limitation of the BSS methods consists in impossible determination of the

original amplitude of the source signals and no more than N sources can be found

for N recorded signals [12]. Additionally, independent component analysis (ICA)

relies on the assumption that the sources are statistically independent, indicating

that the sources are not correlated with each other and as a rule not distributed in

the value domain. If a distribution of the original signals is close to normal, the

result can be ambiguous [12]. The goal with a matrix S is to find the components

of X that are as independent of each other as possible. To obtain this, the data is

pre-processed, specifically centered (the mean of each signal is zero) and whitened

(variance of each signal is equal to 1) to remove correlation. Then, different measures

of normality (negentropy or kurtosis) are used to modify a W matrix using the Newton

approximation method and the chosen non-quadratic function.

There are many variations of the ICA algorithm. However, the fastICA algorithm

was chosen for the implementation because it is the most commonly used and it was

easy to use parallel methods on it.

2.2. Data representation and implementation

The fastICA algorithm implementation was written in C, based on the version avail-

able in Matlab and the open-source it++ library. The tanh (hyperbolic tangent)

458 Anna Gajos-Balińska, Grzegorz M. Wójcik, Przemys law Stpiczyński

function from the basic mathematical library was used to modify the weights. A sym-

metrical approach of searching for components was adopted, indicating that the al-

gorithm calculates all components simultaneously.

It is worth noting that fastICA in the it++ and Matlab implementations use

matrix reduction to analyze multidimensional data, which reduces computational ac-

curacy. However, it reduces computational complexity. According to the Matlab

documentation, the fastICA algorithm for large data sets is not stable. The data set

obtained in the EEG study is multidimensional, but the analysis of the results should

be based on those most accurate. Therefore, the solution does not reduce the matrix

dimension and calculations are performed for the entire data set. The most important

aspect of the solution was the development of a methodology for time optimization

of individual steps of the algorithm based on the use of the capabilities of multi-core

architectures. This implementation applies the OpenMP interface.

In Listing 1 there is a scheme of fastICA algorithm with an indication of the

most important steps. The mul functions use matrix multiplication on the CPU or

GPU depending on the version of the implementation.

Listing 1: Scheme of fastICA algorithm

1 // W - separating matrix

2 // n - number of eletrodes , m - number of samples

3 // resultW - the resulting separation matrix

4 // whiteningMatrix - calculated earlier

5 randWeight(W, n, n); // random weights

6 orth(W, n, n); // orthogonalization

7 while (! found) { // next iterations

8 found =0;

9 if (it > maxNumIterations - 1) {

10 // iteration count exceeded

11 }

12 it++;

13 // Weight matrix normalization and convergence estimation

14 // Checking if the weights have changed

15 if(! found) {

16 // Modification of weights and set found parameter

17 }

18 }

19 // Rewriting the final form of the separating matrix

20 mul(W, n, true , whiteningMatrix , n, false , n, resultW);

The parallel directives from OpenMP were used in parts of the algorithm where

the entire signal was applied (signal whitening and calculation of successive approxi-

mations). With the Intel Cilk Plus extensions for C and C++, one can use array nota-

tion and built-in reduction functions (such as finding the maximum or minimum value

in an array), which makes the code more readable and forces effective vectorization.

Hybrid implementation of the fastICA algorithm for high-density EEG. . . 459

For parts of the algorithm, such as matrix multiplication, vector and eigenvalue calcu-

lations, it was much more advantageous to use ready-made solutions from the BLAS

and MKL libraries (cblas dgemm, cblas dcopy, LAPACKE dsyev, LAPACKE dgesvd)

than their implementations [18].

Originally, in the iterative part of the algorithm, the matrix multiplication of

the entire signal was implemented by multiplication functions from the CUBLAS li-

brary, which is the equivalent of the BLAS library for the NVIDIA graphics cards.

When performing calculations on the graphics card, it is important to be aware of

the additional time overhead associated with host-device data transfer [28]. In this

situation, each iteration means additional operations related to uploading and down-

loading data. Using the potential of the GPU inside the iterative loop, each data

transfer seemed risky. However, by transferring the calculations related to the use

of the non-square function and modifying the weights to a separate library compiled

by nvcc, the size of the data sent at a time was decreased. This required writing

a function dedicated to the graphics card (kernel) taking into account the problems

of memory shared by blocks and threads of the CUDA architecture. In Listing 2, you

can find a code fragment along with its invocation. On the other hand, in Listing 3,

there is a section of C code that executes in each iteration.

Listing 2: Code for kernel function

1 __global__ void kernelSum(double * __restrict__ A,

2 double * __restrict__ blockResults , int m, double a1) {

3

4 extern __shared__ double sums [];

5 double sum = 0.0;

6 double * p = &A[blockIdx.x * m];

7

8 for(int i = threadIdx.x; i < m; i += blockDim.x) {

9 // Using of tangent functions

10 A[blockIdx.x * m + i] = tanh(a1*p[i]);

11 sum += (1 - pow(p[i], 2));

12 }

13

14 sums[threadIdx.x] = x;

15 __syncthreads ();

16 for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {

17 if(threadIdx.x < offset) {

18 sums[threadIdx.x] += sums[threadIdx.x + offset];

19 }

20 __syncthreads ();

21 }

22

23 if(threadIdx.x == 0) {

24 blockResults[blockIdx.x] = sums [0];

25 }

460 Anna Gajos-Balińska, Grzegorz M. Wójcik, Przemys law Stpiczyński

26 }

27 void tanhGPU_wrapper(double * A, double a1, int n, int m,

28 double * X, double * W, double * G, double * nvec) {

29

30 int nm = n*m;

31 int bs , mings;

32

33 cudaOccupancyMaxPotentialBlockSize(

34 &mings , &bs , tanhGPU , 0, nm);

35 size_t shmsize = sizeof(double) * bs;

36

37 mulGPU(X, m, true , W, n, false , n, A);

38

39 kernelSum <double ><<<n, bs , shmsize >>>(A, nvec , m, a1);

40

41 mulGPU(X, n, false , A, n, false , m, G);

42

43 cudaDeviceSynchronize ();

44 }

Listing 3: Part of the code with the modification of weights using the kernel function

1 // W - buffer with weights

2 // c_W - buffer with weights for CUDA

3 cublasSetVector(nn, sizeof (*W), W, 1, c_W , 1);

4

5 // n - size; W is matrix nxn

6 copyMatrix(Wprev , W, n, n);

7

8 cublasSetVector(n, sizeof (*nvec), nvec , 1, c_nvec , 1);

9

10 // Formula for maximizing the normal distribution

11 // using the tangent function

12 // m - number of samples

13 // G1, G2 -- values of tangent functions

14 // c_X - input values

15 // c_hypTan - matrix with results from kernel function

16 // nvec - vector with results from kernel funtion

17

18 tanhGPU_wrapper(c_hypTan , a1, n, m, c_X , c_W , c_G1 , c_nvec);

19 cublasGetVector(nn, sizeof (*c_G1), c_G1 , 1, G1 , 1);

20 cublasGetVector(n, sizeof (* c_nvec), c_nvec , 1, nvec ,1);

21

22 #pragma omp parallel // efficiency: 95\%,

23 // gain: 1,90x according to Intel Advisor

24 {

25 #pragma omp for

Hybrid implementation of the fastICA algorithm for high-density EEG. . . 461

26 for(int i = 0; i < n; i++)

27 G2[i*n:n] = W[i*n:n]*nvec[i];

28 } // parallel

29

30 // Modification of weights

31 W[0:nn] = (G1[0:nn] - G2[0:nn])/m*a1;

3. Results

All tests performed on these architectures are described in Table 1.

Table 1
Selected architectures

Infrastructure
Cluster
name

CPU
Number
of cores

GPU

UMCS Solaris 2x Intel Xeon

E5-2670 v3 @ 2.30GHz
24

NVIDIA

Tesla V100s

PLGrid
Zeus 2x Intel Xeon

X5650 @ 2.67GHz
12

NVIDIA

Tesla M2090

PLGrid Prometheus 2x Intel Xeon

E5-2680 @ 2.5GHz
24

NVIDIA

Tesla K40d

The study compared the speed of the fastICA implementation for the data sets of

256× 1000 (1 second of recording), 256 × 10000 (10 seconds of recording), 256×100000

(100 seconds of recording) and 256×1000000 (1000 seconds of recording) data sets.

For each architecture, the time efficiency was compared depending on the number of

threads the program was launched with. The initial selection of weights was the same

each time, and the resulting time was averaged over the number of needed iterations

(for the purposes of this study, it was established that approximately 100 iterations

were needed for the selected EEG data).

3.1. Tests of implementation

The previous research proved that the use of virtual cores does not speed up the

performance of the algorithm as is the case with physical cores, so the tests were

performed without the use of hyper-threading. [6, 7, 9, 10].

3.1.1. Solaris

Table 2 shows the program execution time in seconds for all data. Figure 2 presents

the acceleration obtained by the CPU+GPU version compared to the CPU version

with a given number of threads. As follows from the results the use of GPU capabilities

speeds up the performance of the algorithm. The difference is not as significant as

the number of threads increases, but there is still a slight time gain from using the

extra CPU cores.

462 Anna Gajos-Balińska, Grzegorz M. Wójcik, Przemys law Stpiczyński

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

Figure 2. Solaris: 2x Xeon CPU E5-2670 v3 @ 2.30GHz – 24 cores, NVIDIA Tesla V100s –

comparing the acceleration of the CPU+GPU version to the CPU

Table 2
Solaris: 2x Intel Xeon CPU E5-2670 v3 @ 2.30GHz – 24 cores, NVIDIA Tesla V100s

256 × 1000 256 × 10000 256 × 100000 256 × 1000000

Number
of threads

CPU+
GPU

CPU
CPU+
GPU

CPU
CPU+
GPU

CPU
CPU+
GPU

CPU

1 3.075 2.781 4.118 11.577 5.100 100.253 17.346 989.861

2 3.197 2.582 4.150 8.154 5.253 64.152 15.541 648.398

3 3.346 2.456 4.479 7.572 4.860 57.090 14.205 571.254

4 2.862 2.087 3.835 6.379 4.337 48.028 13.069 461.153

5 2.827 2.338 3.942 6.511 5.107 49.054 13.467 459.481

6 3.026 1.992 3.813 5.738 4.571 41.999 13.278 409.896

7 2.934 1.958 3.944 5.919 4.358 45.687 12.802 404.973

8 2.721 1.918 3.716 5.291 4.530 39.361 12.306 382.040

9 2.982 2.039 4.237 5.643 4.486 42.711 12.386 390.353

10 2.828 1.977 4.213 5.440 4.294 38.645 12.465 364.328

11 2.879 2.003 3.946 5.603 4.666 40.752 12.361 375.422

12 2.880 1.925 3.783 5.448 4.429 40.369 12.562 354.141

13 2.799 1.976 3.887 5.379 4.352 42.271 12.426 368.260

14 2.861 1.981 4.246 5.256 4.468 38.177 12.124 346.272

15 2.886 1.925 3.804 5.474 4.429 40.127 12.181 350.959

16 2.705 1.821 4.008 5.215 4.099 36.894 12.385 341.640

17 2.948 1.997 3.886 5.658 4.415 38.647 12.524 348.708

18 2.890 2.013 3.938 5.347 4.392 37.018 12.099 340.452

19 2.903 2.029 3.946 5.496 4.423 40.451 12.392 341.226

20 3.067 2.066 3.802 5.360 4.443 37.483 12.184 351.473

Hybrid implementation of the fastICA algorithm for high-density EEG. . . 463

Table 2 cont.

21 2.900 1.949 3.958 5.435 4.403 37.311 12.310 339.592

22 2.837 2.076 4.060 5.471 4.357 38.132 12.012 342.490

23 2.998 2.124 3.904 5.475 4.422 39.912 12.412 341.577

24 3.085 2.106 4.052 5.439 4.450 37.579 12.189 346.825

Figure 3 shows the acceleration of the CPU version (a) and CPU+GPU (b) de-

pending on the number of threads. The speedup is calculated in relation to a single-

threaded program. They show more clearly that adding computational cores still

generates a profit, although in the case of the CPU version the graphs are flatter.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

a)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

b)

Figure 3. Solaris: 2x Intel Xeon CPU E5-2670 v3 @ 2.30GHz – 24 cores, NVIDIA Tesla V100s

– the acceleration compared to the single-threaded version: a) CPU-based implementation;

b) CPU+GPU-based implementation

464 Anna Gajos-Balińska, Grzegorz M. Wójcik, Przemys law Stpiczyński

Notably, the machine with the Tesla V100S card takes 17 seconds for the largest

data size using a single thread. However, we are to do with very powerful equipment of

the latest generation. It is worth noting, however, that the use of CUDA capabilities

without introducing parallel calculations on the CPU reduces the calculation time

significantly. It is important in the context of building computing units in the research

centers for the processing of EEG data. Providing such a unit with a graphics card

with adequate power can be cheaper than building a multi-core computing cluster.

3.1.2. Zeus and Prometheus

Tables 3 and 4 show the program execution time in seconds for all data. As in the So-

laris cluster, more cores reduce the computation time, the implementation is similarly

scalable, and the increase in data size generates better time gains.

Table 3
Zeus: 2x Intel Xeon X5650 @ 2.67GHz – 12 cores, Tesla M2090

256 × 1000 256 × 10000 256 × 100000 256 × 1000000

Number
of threads

CPU+
GPU

CPU
CPU+
GPU

CPU
CPU+
GPU

CPU
CPU+
GPU

CPU

1 8.596 8.824 6.498 21.854 13.592 224.053 109.585 2242.188

2 6.994 6.436 5.408 13.451 12.222 130.692 101.576 1298.195

3 6.134 5.070 4.937 10.122 11.638 98.258 98.350 970.889

4 5.476 3.963 4.632 7.903 10.985 77.353 96.650 765.494

5 5.623 3.923 4.674 7.578 10.957 71.673 96.109 704.106

6 5.513 3.748 4.585 6.679 10.880 63.229 95.326 626.615

7 5.522 3.704 4.502 6.583 10.791 61.962 95.154 610.624

8 5.190 3.304 4.454 6.055 10.723 56.966 94.769 555.167

9 5.436 3.603 4.459 6.303 10.664 57.433 94.745 555.466

10 5.411 3.564 4.419 6.299 10.710 57.180 94.519 543.231

11 5.366 3.716 4.455 6.135 10.802 56.176 94.573 545.689

12 5.573 3.506 4.551 6.102 10.571 57.342 94.395 552.920

Table 4
Prometheus: 2x Intel Xeon E5-2680 @ 2.5GHz – 24 cores, Tesla K40d

256×1000 256×10000 256×100000 256×1000000

Number
of threads

CPU+
GPU

CPU
CPU+
GPU

CPU
CPU+
GPU

CPU
CPU+
GPU

CPU

1 2.494 2.575 1.470 6.272 4.328 63.333 43.934 633.295

2 2.144 2.340 1.448 4.237 4.184 40.630 42.545 399.542

Hybrid implementation of the fastICA algorithm for high-density EEG. . . 465

Table 4 cont.

3 2.057 2.223 1.459 3.724 4.154 33.801 42.229 353.096

4 1.968 2.056 1.405 3.242 4.059 29.936 41.688 300.085

5 2.089 2.150 1.421 3.299 4.099 28.971 41.608 281.807

6 1.951 2.083 1.366 3.091 4.029 26.651 41.509 259.350

7 1.911 2.042 1.352 3.073 4.064 28.096 41.478 271.448

8 1.733 1.937 1.305 2.798 4.026 24.679 41.283 237.445

9 1.934 1.956 1.343 2.985 3.967 25.829 41.204 246.441

10 1.886 1.984 1.361 2.859 4.042 24.261 41.231 232.248

11 1.866 1.899 1.338 2.819 3.970 24.460 41.245 232.758

12 1.869 1.917 1.409 2.737 3.965 24.172 41.082 216.436

13 1.885 1.941 1.285 2.836 3.935 23.769 41.180 234.071

14 1.879 1.864 1.319 2.783 4.006 23.355 41.048 223.344

15 1.907 2.054 1.387 2.857 3.968 24.689 41.112 215.137

16 1.912 1.861 1.318 2.803 4.002 22.574 41.096 207.854

17 1.871 1.874 1.371 2.937 4.019 24.664 40.990 241.892

18 1.892 1.993 1.377 2.854 3.991 22.576 41.045 219.282

19 1.940 2.132 1.330 2.920 3.957 25.215 41.052 227.162

20 1.975 2.142 1.449 2.828 4.159 23.150 40.995 205.798

21 2.103 2.042 1.335 2.992 3.936 23.164 41.055 216.180

22 1.959 1.954 1.316 2.924 3.921 22.844 40.982 204.775

23 1.975 2.167 1.385 3.063 3.982 24.487 41.162 226.745

24 2.243 2.080 1.483 2.893 3.992 22.750 41.086 213.694

Figures 4 and 5 present the acceleration of the CPU+GPU version compared to

that of CPU with a given number of threads. Figures 6 and 7 show the obtained

acceleration of the version of the implementation using CPU (a) and CPU+GPU

(b) depending on the number of threads. The speedup is calculated in relation to

a single-threaded program. One can see a similar relationship, that is, using more

threads, you can still expect a gain in time.

466 Anna Gajos-Balińska, Grzegorz M. Wójcik, Przemys law Stpiczyński

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

Figure 4. Prometheus: 2x Intel Xeon E5-2680 @ 2.5GHz – 24 cores, Tesla K40d –

comparing the acceleration of the CPU+GPU version to the CPU

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 2 3 4 5 6 7 8 9 10 11 12

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

Figure 5. Zeus: 2x Intel Xeon X5650 @ 2.67GHz – 12 cores, Tesla M2090 –

comparing the acceleration of the CPU+GPU version to the CPU

Hybrid implementation of the fastICA algorithm for high-density EEG. . . 467

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 3 4 5 6 7 8 9 10 11 12

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 3 4 5 6 7 8 9 10 11 12

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

b)

Figure 6. Zeus: 2x Intel Xeon X5650 @ 2.67GHz – 12 cores, Tesla M2090 –

the acceleration compared to the single-threaded version: a) CPU-based implementation;

b) CPU+GPU-based implementation

468 Anna Gajos-Balińska, Grzegorz M. Wójcik, Przemys law Stpiczyński

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

a)

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

b)

Figure 7. Prometheus: 2x Intel Xeon E5-2680 @ 2.5GHz – 24 cores, Tesla K40d –

the acceleration compared to the single-threaded version: a) CPU-based implementation;

b) CPU+GPU-based implementation

Hybrid implementation of the fastICA algorithm for high-density EEG. . . 469

4. Discussion

The results proved that the support from the graphics card and CUDA technology

accelerates the execution time of the algorithm significantly. The increase in the

number of CPU cores still resulted in acceleration, although the benefits were not

so visible.

Owing to the variety of architectures, it is possible to indicate which elements

of the implementation are crucial for time optimization (in terms of reducing the

running time) of the algorithm. At the same time, it is worth mentioning that due to

the complexity of the structure of computing clusters, creating efficient programs on

them is a demanding task [14,20,21,28]. The fact that fastICA is an iterative method

requires thread synchronization after each iteration, which affects the execution time

significantly and makes it difficult to scale. It can be stated that this is the main

“bottleneck” of the algorithm with no prospects for improving the results at this point.

As a matter of fact, the machine with the NVIDIA Tesla V100s graphics card gave

the most satisfactory results, although cards of this type are not the cheapest product.

However, the latest generation Intel Xeon processors are also quite expensive. These

factors should also be considered when building a computational machine for EEG

data analysis. Providing such unit with a graphics card with the appropriate power

could be less expensive than constructing a multi-core computing cluster.

5. Conclusions and future works

This paper presents the time execution results for a parallel version of the fastICA

algorithm adapted to EEG signals and multi-core architectures (capacity of Intel ar-

chitectures and available libraries as well as extensions together with CUDA libraries).

Tests were carried out on several computational clusters using the EEG data of vari-

ous sizes. The paper indicates the possibility of improving the parallelized version of

the algorithm by transferring more calculations to the graphics card.

The future plan is also to integrate existing solutions with EGI System NetStation

[6–10] and after separation of sources, to make an attempt to reject artifacts found

in this way automatically. A possible method of doing this is to use, among others,

convolutional neural networks.

Neuroimaging techniques, including EEG, provide excellent opportunities to get

to know how a person functions, and thus, based on the research and diagnostics, to

improve living conditions. Shortening the time of the electroencephalographic signal

analysis tools, it is possible to help more patients, accelerate research, and improve

BCI solutions [5, 15,16,19,24,26].

Acknowledgements

This research was partially supported by PLGrid Infrastructure.

470 Anna Gajos-Balińska, Grzegorz M. Wójcik, Przemys law Stpiczyński

References

[1] Albajes-Eizagirre A., Dubreuil Vall L., David I.S., Riera A., Soria-Frisch A.,

Dunne S., Ruffini G.: EEG/ERP analysis: methods and applications, CRC Press,

Boca Raton, 2014.

[2] Brown G.D., Yamada S., Sejnowski T.J.: Independent component analysis at

the neural cocktail party, Trends in Neurosciences, vol. 24(1), pp. 54–63, 2001.

doi: 10.1016/S0166-2236(00)01683-0.

[3] Delorme A., Sejnowski T., Makeig S.: Enhanced detection of artifacts in EEG

data using higher-order statistics and independent component analysis, Neuroim-

age, vol. 34(4), pp. 1443–1449, 2007. doi: 10.1016/j.neuroimage.2006.11.004.

[4] Dickter C.L., Kieffaber P.D.: EEG methods for the psychological sciences, SAGE

Knowledge, Los Angeles, 2014.

[5] Duch W., Nowak W., Meller J., Osiński G., Dobosz K., Miko lajewski D.,

Wójcik G.M.: Computional approach to understanding autism spectrum

disorders, Computer Science, vol. 13(2), pp. 47–61, 2012. doi: 10.7494/

csci.2012.13.2.47.

[6] Gajos A., Wójcik G.M.: Independent component analysis of EEG data for EGI

system, Bio-Algorithms and Med-Systems, vol. 12(2), pp. 67–72, 2016.

[7] Gajos-Balińska A., Wójcik G.M., Stpiczyński P.: Concept of independent

component analysis algorithm parallelisation. In: M. Bubak, M. Turala, K. Wiatr

(eds.), Proceedings of Cracow Grid Workshop – CGW’15, pp. 55–56, 2015.

[8] Gajos-Balińska A., Wójcik G.M., Stpiczyński P.: Parallel independent component

analysis algorithm – performance comparison for EEG signal. In: M. Bubak,

M. Turala, K. Wiatr (eds.), CGW Workshop ’17, Kraków, Poland, October 23–25,

2017: proceedings, pp. 33–34, 2017.

[9] Gajos-Balińska A., Wójcik G.M., Stpiczyński P.: High performance optimization

of independent component analysis algorithm for EEG data, Lecture Notes in

Computer Science, vol. 10777, pp. 495–504, 2018.

[10] Gajos-Balińska A., Wójcik G.M., Stpiczyński P.: Cooperation of CUDA and

Intel multi-core architecture in the independent component analysis algorithm

for EEG data, Bio-Algorithms and Med-Systems, vol. 16(3), 2020. doi: 10.1515/

bams-2020-0044.

[11] Hyvärinen A.: Fast and robust fixed-point algorithms for independent component

analysis, IEEE Transactions on Neural Networks, vol. 10(3), pp. 626–634, 1999.

[12] Hyvärinen A., Oja E.: Independent component analysis: algorithms and appli-

cations, Neural Networks, vol. 13(4), pp. 411–430, 2000. doi: 10.1016/s0893-

6080(00)00026-5.

[13] Kawala-Janik A., Bauer W., Al-Bakri A., Haddix C., Yuvaraj R., Cichon K.,

Podraza W.: Implementation of low-pass fractional filtering for the purpose of

analysis of electroencephalographic signals. In: Conference on Non-integer Order

Calculus and Its Applications, pp. 63–73, Springer, 2017.

https://doi.org/10.1016/S0166-2236(00)01683-0
https://doi.org/10.1016/S0166-2236(00)01683-0
https://doi.org/10.1016/S0166-2236(00)01683-0
https://doi.org/10.1016/j.neuroimage.2006.11.004
https://doi.org/10.1016/j.neuroimage.2006.11.004
https://doi.org/10.1016/j.neuroimage.2006.11.004
https://journals.agh.edu.pl/csci/article/view/12
https://journals.agh.edu.pl/csci/article/view/12
https://doi.org/10.7494/csci.2012.13.2.47
https://doi.org/10.7494/csci.2012.13.2.47
https://doi.org/10.1515/bams-2020-0044
https://doi.org/10.1515/bams-2020-0044
https://doi.org/10.1515/bams-2020-0044
https://doi.org/10.1515/bams-2020-0044
https://doi.org/10.1515/bams-2020-0044
https://doi.org/10.1016/s0893-6080(00)00026-5
https://doi.org/10.1016/s0893-6080(00)00026-5
https://doi.org/10.1016/s0893-6080(00)00026-5
https://doi.org/10.1016/s0893-6080(00)00026-5

Hybrid implementation of the fastICA algorithm for high-density EEG. . . 471

[14] Lastovetsky A., Szustak L., Wyrzykowski R.: Model-based optimization of

EULAG kernel on Intel Xeon Phi through load imbalancing, IEEE Trans-

actions on Parallel and Distributed Systems, vol. 28(3), pp. 787–797, 2016.

doi: 10.1109/TPDS.2016.2599527.

[15] Miko lajewska E., Miko lajewski D.: Integrated IT environment for people with

disabilities: a new concept, Open Medicine, vol. 9(1), pp. 177–182, 2014.

doi: 10.2478/s11536-013-0254-6.

[16] Miko lajewska E., Miko lajewski D.: The prospects of brain – computer interface

applications in children, Open Medicine, vol. 9(1), pp. 74–79, 2014. doi: 10.2478/

s11536-013-0249-3.

[17] NetStation acquisition. Technical manual. Documentation, EGI, 2011.

[18] Rahman R.: Intel Xeon Phi coprocessor architecture and tools: the guide for

application developers, Apress, Berkely, CA, USA, 2013.

[19] Rojek I., Macko M., Mikolajewski D., Sága M., Burczynski T.: Modern methods

in the field of machine modelling and simulation as a research and practical issue

related to Industry 4.0, The Bulletin of the Polish Academy of Sciences Technical

Sciences, vol. 69(2), 2021. doi: 10.24425/bpasts.2021.136717.

[20] Szustak L.: Strategy for data-flow synchronizations in stencil parallel computa-

tions on multi-/manycore systems, The Journal of Supercomputing, vol. 74(4),

pp. 1534–1546, 2018.

[21] Szustak L., Bratek P.: Performance portable parallel programming of heteroge-

neous stencils across shared-memory platforms with modern Intel processors, The

International Journal of High Performance Computing Applications, vol. 33(3),

pp. 534–553, 2019. doi: 10.1177/1094342019828153.

[22] Tadeusiewicz R. (ed.): Neurocybernetyka teoretyczna, Wydawnictwa Uniwer-

sytetu Warszawskiego, 2009.

[23] Ungureanu M., Bigan C., Strungaru R., Lazarescu V.: Independent component

analysis applied in biomedical signal processing, Measurement Science Review,

vol. 4(2), p. 18, 2004.

[24] Wojcik G.M., Masiak J., Kawiak A., Kwasniewicz L., Schneider P., Polak N.,

Gajos-Balinska A.: Mapping the Human Brain in Frequency Band Analysis of

Brain Cortex Electroencephalographic Activity for Selected Psychiatric Disor-

ders, Frontiers in Neuroinformatics, vol. 12, 2018. doi: 10.3389/fninf.2018.00073.

[25] Wojcik G.M., Masiak J., Kawiak A., Kwasniewicz L., Schneider P., Postepski F.,

Gajos-Balinska A.: Analysis of Decision-Making Process Using Methods of Quan-

titative Electroencephalography and Machine Learning Tools, Frontiers in Neu-

roinformatics, vol. 13, 2019. doi: 10.3389/fninf.2019.00073.

[26] Wojcik G.M., Masiak J., Kawiak A., Schneider P., Kwasniewicz L., Polak N.,

Gajos-Balinska A.: New Protocol for Quantitative Analysis of Brain Cortex Elec-

troencephalographic Activity in Patients With Psychiatric Disorders, Frontiers

in Neuroinformatics, vol. 12, 2018. doi: 10.3389/fninf.2018.00027.

https://doi.org/10.1109/TPDS.2016.2599527
https://doi.org/10.1109/TPDS.2016.2599527
https://doi.org/10.1109/TPDS.2016.2599527
https://doi.org/10.2478/s11536-013-0254-6
https://doi.org/10.2478/s11536-013-0254-6
https://doi.org/10.2478/s11536-013-0254-6
https://doi.org/10.2478/s11536-013-0249-3
https://doi.org/10.2478/s11536-013-0249-3
https://doi.org/10.2478/s11536-013-0249-3
https://doi.org/10.2478/s11536-013-0249-3
https://doi.org/10.24425/bpasts.2021.136717
https://doi.org/10.24425/bpasts.2021.136717
https://doi.org/10.24425/bpasts.2021.136717
https://doi.org/10.24425/bpasts.2021.136717
https://doi.org/10.1177/1094342019828153
https://doi.org/10.1177/1094342019828153
https://doi.org/10.1177/1094342019828153
https://www.frontiersin.org/articles/10.3389/fninf.2018.00073
https://www.frontiersin.org/articles/10.3389/fninf.2018.00073
https://www.frontiersin.org/articles/10.3389/fninf.2018.00073
https://doi.org/10.3389/fninf.2018.00073
https://www.frontiersin.org/articles/10.3389/fninf.2019.00073
https://www.frontiersin.org/articles/10.3389/fninf.2019.00073
https://doi.org/10.3389/fninf.2019.00073
https://www.frontiersin.org/articles/10.3389/fninf.2018.00027
https://www.frontiersin.org/articles/10.3389/fninf.2018.00027
https://doi.org/10.3389/fninf.2018.00027

472 Anna Gajos-Balińska, Grzegorz M. Wójcik, Przemys law Stpiczyński

[27] Wójcik G.M.: Selected methods of quantitative analysis in electroencephalog-

raphy. In: I. Roterman-Konieczna (ed.), Simulations in Medicine, pp. 35–54,

De Gruyter, 2020. doi: 10.1515/9783110667219-003.

[28] Wyrzykowski R., Szustak L., Rojek K.: Parallelization of 2D MPDATA EULAG

algorithm on hybrid architectures with GPU accelerators, Parallel Computing,

vol. 40(8), pp. 425–447, 2014. doi: 10.1016/j.parco.2014.04.009.

Affiliations

Anna Gajos-Balińska
Maria Curie-Sklodowska University, Department of Neuroinformatics and Biomedical
Engineering, Institute of Computer Science, ul. Akademicka 9, 20-033 Lublin, Poland,
anna.gajos-balinska@umcs.pl

Grzegorz M. Wójcik
Maria Curie-Sklodowska University, Department of Neuroinformatics and Biomedical
Engineering, Institute of Computer Science, ul. Akademicka 9, 20-033 Lublin, Poland

Przemys law Stpiczyński
Maria Curie-Sklodowska University, Department of Information Systems Software,
Institute of Computer Science, ul. Akademicka 9, 20-033 Lublin, Poland

Received: 05.06.2023

Revised: 29.11.2023

Accepted: 29.11.2023

https://doi.org/10.1515/9783110667219-003
https://doi.org/10.1515/9783110667219-003
https://doi.org/10.1515/9783110667219-003
https://doi.org/10.1016/j.parco.2014.04.009
https://doi.org/10.1016/j.parco.2014.04.009
https://doi.org/10.1016/j.parco.2014.04.009
anna.gajos-balinska@umcs.pl

	Introduction
	Materials and methods
	Independent component analysis
	Data representation and implementation

	Results
	Tests of implementation
	Solaris
	Zeus and Prometheus

	Discussion
	Conclusions and future works

