PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerodynamic analysis of human walking, running and sprinting by numerical simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The drag in walking, running and sprinting locomotion can be assessed by analytical procedures and experimental techniques. However, assessing the drag variations by the above-mentioned types of locomotion were not found using computational fluid dynamics (CFD). Thus, the aim of this study was two-fold: (1) to assess the aerodynamics of human walking, running and sprinting by CFD technique; 2) compare such aerodynamic characteristics between walking and running. Three 3D models were produced depicting the walking, running and sprinting locomotion techniques, converted to computer aided design models and meshed. The drag varied with locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity. In conclusion, drag varied with locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity.
Słowa kluczowe
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Sports, Instituto Superior de Ciências Educativas do Douro, Penafiel, Portugal.
  • Department of Sports Sciences, Instituto Politécnico de Bragança, Bragança, Portugal.
  • Research Center in Sports, Health and Human Development (CIDESD), Covilhã, Portugal.
autor
  • Department of Arts and Multimedia, Instituto Superior de Ciências Educativas do Douro, Penafiel, Portugal.
  • Department of Sports Sciences, Instituto Politécnico de Bragança, Bragança, Portugal.
  • Research Center in Sports, Health and Human Development (CIDESD), Covilhã, Portugal.
  • Department of Sport Sciences, Polytechnic Institute of Guarda, Guarda, Portugal.
  • Research Center in Sports, Health and Human Development (CIDESD), Covilhã, Portugal.
  • Department of Sports Sciences, University of Beira Interior, Covilhã, Portugal.
  • Department of Sports Sciences, Instituto Politécnico de Bragança, Bragança, Portugal.
  • Research Center in Sports, Health and Human Development (CIDESD), Covilhã, Portugal.
  • Department of Sports Sciences, Instituto Politécnico de Bragança, Bragança, Portugal.
  • Research Center in Sports, Health and Human Development (CIDESD), Covilhã, Portugal.
autor
  • Department of Sports Sciences, Instituto Politécnico de Bragança, Bragança, Portugal.
  • Research Center in Sports, Health and Human Development (CIDESD), Covilhã, Portugal.
  • Department of Sports Sciences, Instituto Politécnico de Bragança, Bragança, Portugal.
  • Research Center in Sports, Health and Human Development (CIDESD), Covilhã, Portugal.
Bibliografia
  • [1] BARBOSA T.M., FORTE P., MARINHO D.A., REIS V.M., Comparison of the world and European records in the 100 m dash by a quasi-physical model, Procedia Eng., 2016, 147, 122–126.
  • [2] BARBOSA T.M., MORAIS J.E., FORTE P., NEIVA H., GARRIDO N.D., MARINHO D.A., A comparison of experimental and analytical procedures to measure passive drag in human swimming, PloS One, 2015, 10 (7), e0130868.
  • [3] BARBOSA T.M., RAMOS R., SILVA A.J., MARINHO D.A., Assessment of passive drag in swimming by numerical simulation and analytical procedure, J. Sports Sci., 2018, 36 (5), 492–498.
  • [4] BEAUMONT F., BOGARD F., MURER S., POLIDORI G., MADACI F., TAIAR R., How does aerodynamics influence physiological responses in middle-distance running drafting, Math. Model Eng. Probl., 2019, 6 (1), 129–135.
  • [5] BEAUMONT F., LEGRAND F., BOGARD F., MURER S., VERNEDE V., POLIDORI G., Aerodynamic interaction between in-line runners: new insights on the drafting strategy in running, Sports Biomech., 2021, 1–16, DOI: 10.1080/14763141.2021.2006295.
  • [6] BEAUMONT F., TAIAR R., POLIDORI G., TRENCHARD H., GRAPPE F., Aerodynamic study of time-trial helmets in cycling racing using CFD analysis, J. Biomech., 2018, 6, 1–8.
  • [7] BLOCKEN B., DEFRAEYE T., KONINCKX E., CARMELIET J., HESPEL P., CFD simulations of the aerodynamic drag of two drafting cyclists, Comput. Fluids, 2013, 71, 435–445.
  • [8] BLOCKEN B., Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations, Build. Environ., 2015, 91, 219–245.
  • [9] BOHANNON R.W., WILLIAMS ANDREWS A., Normal walking speed: a descriptive meta-analysis, Physiotherapy, 2011, 97 (3), 182–189.
  • [10] BRUGHELLI M., CRONIN J., CHAOUACHI A., Effects of running velocity on running kinetics and kinematics, J. Strength Cond. Res., 2011, 25 (4), 933–939.
  • [11] CAPPELLINI G., IVANENKO Y.P., POPPELE R.E., LACQUANITI F., Motor patterns in human walking and running, J. Neurophysiol., 2006, 95 (6), 3426–3437.
  • [12] DEFRAEYE T., BLOCKEN B., KONINCKX E., HESPEL P., CARMELIET J., Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests, J. Biomech., 2010, 43 (7), 1262–1268.
  • [13] DINGENEN B., MALLIARAS P., JANSSEN T., CEYSSENS L., VANELDEREN R., BARTON C.J., Two-dimensional video analysis can discriminate differences in running kinematics between recreational runners with and without running-related knee injury, Phys. Ther. Sport, 2019, 38, 184–191.
  • [14] DYER B., The importance of aerodynamics for prosthetic limb design used by competitive cyclists with an amputation: An introduction, Prosthet. Orthot. Int., 2015, 39 (3), 232–237.
  • [15] FORTE P., MARINHO D.A., BARBOSA T.M., MORAIS J.E., FORTE P., MARINHO D.A., Analysis of a normal and aero helmet on an elite cyclist in the dropped position, AIMS Biophys., 2020, 7 (1), 54–64.
  • [16] FORTE P., MARINHO D.A., BARBOSA T.M., MOROUÇO P., MORAIS J.E., Estimation of an elite road cyclist performance in different positions based on numerical simulations and analytical procedures, Front Bioeng. Biotechnol., 2020, 8, 538, DOI: 10.3389/fbioe.2020.00538.
  • [17] FORTE P., MARINHO D.A., MORAIS J.E., MOROUÇO P.G., BARBOSA T.M., The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis, PLoS One, 2018, 13 (2), e0193658.
  • [18] FORTE P., MARINHO D.A., NIKOLAIDIS P.T., KNECHTLE B., BARBOSA T.M., MORAIS J.E., Analysis of cyclist’s drag on the aero position using numerical simulations and analytical procedures: A case study, Int. J. Environ. Res. Public. Health, 2020, 17 (10), 3430.
  • [19] FORTE P., MARINHO D.A., SILVEIRA R., BARBOSA T.M., MORAIS J.E., The aerodynamics and energy cost assessment of an able-bodied cyclist and amputated models by computer fluid dynamics, Medicina, 2020, 56 (5), 241. Aerodynamic analysis of human walking, running and sprinting by numerical simulations 11
  • [20] FORTE P., MORAIS J.E., BARBOSA T.M., MARINHO D.A., Assessment of able-bodied and amputee cyclists’ aerodynamics by computational fluid dynamics, Front. Bioeng. Biotechnol., 2021, 9, 644566, DOI: 10.3389/fbioe.2021.644566.
  • [21] FORTE P., MORAIS J.E., NEIVA H., BARBOSA T.M., MARINHO D.A., The drag crisis phenomenon on an elite road cyclist – a preliminary numerical simulations analysis in the aero position at different speeds, Int. J. Environ. Res. Public. Health., 2020, 17 (14), 5003.
  • [22] FORTE P., BARBOSA T.M., MARINHO D.A., Technologic appliance and performance concerns in wheelchair racing – helping Paralympic athletes to excel. New perspectives in fluid dynamics. Chaoqun, L. (Ed.), IntechOpen: Rijeka, Croatia, 2015, 101–121.
  • [23] FUKUCHI C.A., FUKUCHI R.K., DUARTE M., Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis, Syst. Rev., 2019, 8 (1), 153.
  • [24] GARDAN N., SCHNEIDER A., POLIDORI G., TRENCHARD H., SEIGNEUR J.M., BEAUMONT F., FOURCHET F., TAIARC R., Numerical investigation of the early flight phase in skijumping, J. Biomech., 2017, 59, 29–34.
  • [25] HIRATA K., OKAYAMA T., TERAOKA T., FUNAKI J., Precise aerodynamics measurements of a track runner using a wind-tunnel moving-belt system, Procedia Eng., 2012, 34, 32–37.
  • [26] JONES A.M., KIRBY B.S., CLARK I.E., RICE H.M., FULKERSON E., WYLIE L.J., WILKERSON D.P., VANHATALO A., WILKINS B.W., Physiological demands of running at 2-hour marathon race pace, J. Appl. Physiol., 2021, 130 (2), 369–379.
  • [27] MANNION P., TOPARLAR Y., BLOCKEN B., HAJDUKIEWICZ M., ANDRIANNE T., CLIFFORD E., Computational fluid dynamics analysis of hand-cycle aerodynamics with static wheels: Sensitivity analyses and impact of wheel selection, Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol., 2021, 235 (4), 286–300.
  • [28] MARINHO D.A., MANTHA V.R., VILAS-BOAS J.P., RAMOS R.J., MACHADO L., ROUBOA A.I., SILVA A.J., Effect of wearing a swimsuit on hydrodynamic drag of swimmer, Braz. Arch. Biol. Technol., 2012, 55, 851–856.
  • [29] MCNEILL A.R., Energetics and optimization of human walking and running: The 2000 Raymond Pearl memorial lecture, Am. J. Hum. Biol., 2002, 14 (5), 641–648.
  • [30] O’DONOGHUE P., GIRARD O., REID M., Tennis. Routeldge handbook of sports performance analysis, London: Routledge, 2013, 404–414.
  • [31] POGNI M., PETRONE N., ANTONELLO M., GOBBATO P., Comparison of the aerodynamic performance of four racing bicycle wheels by means of CFD calculations, Procedia Eng., 2015, 112, 418–423.
  • [32] POLIDORI G., LEGRAND F., BOGARD F., MADACI F., BEAUMONT F., Numerical investigation of the impact of Kenenisa Bekele’s cooperative drafting strategy on its running power during the 2019 Berlin marathon, J. Biomech., 2020, 107, 109854, DOI: 10.1016/j.jbiomech.2020.109854.
  • [33] PUELLES MAGÁN G., TERRA W., SCIACCHITANO A., Aerodynamics analysis of speed skating helmets: Investigation by CFD simulations, Appl. Sci., 2021, 11 (7), 3148.
  • [34] RASICA L., PORCELLI S., MINETTI A.E., PAVEI G., Biomechanical and metabolic aspects of backward (and forward) running on uphill gradients: another clue towards an almost inelastic rebound, Eur. J. Appl. Physiol., 2020, 120 (11), 2507–2515.
  • [35] ROCA-DOLS A., LOSA-IGLESIAS M.E., SÁNCHEZ-GÓMEZ R., BECERRO-DE-BENGOA-VALLEJO R., LÓPEZ-LÓPEZ D., RODRÍGUEZ-SANZ D., JIMÉNEZ E.M., CALVO-LOBO C., Effect of the cushioning running shoes in ground contact time of phases of gait, J. Mech. Behav. Biomed. Mater, 2018, 88, 196–200.
  • [36] ROOS P.E., BUTTON K., VAN DEURSEN R.W.M., Motor control strategies during double leg squat following anterior cruciate ligament rupture and reconstruction: an observational study, J. NeuroEngineering Rehabil., 2014, 11 (1), 19.
  • [37] ROUBOA A., SILVA A., LEAL L., ROCHA J., ALVES F., The effect of swimmer’s hand/forearm acceleration on propulsive forces generation using computational fluid dynamics, J. Biomech., 2006, 39 (7), 1239–1248.
  • [38] THORSTENSSON A., NILSSON J., CARLSON H., ZOMLEFER M.R., Trunk movements in human locomotion, Acta Physiol. Scand., 1984, 121 (1), 9–22.
  • [39] VAN DRUENEN T., BLOCKEN B., Aerodynamic analysis of uphill drafting in cycling, Sports Eng., 2021, 24 (1), 1–11.
  • [40] WUNDERSITZ D.W.T., GASTIN P.B., RICHTER C., ROBERTSON S.J., NETTO K.J., Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running, Eur. J. Sport Sci., 2015, 15 (5), 382–390.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0daa2b15-11b9-43e0-9fab-44634c69ba56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.