PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined carbon content assessment method for powder metallurgy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Powder metallurgy (PM) lacks a clear method to analyse the combined carbon content based on metallography visualisation, and this article describes the creation of such a method for powder materials. Design/methodology/approach: Different methods are used to analyse combined carbon within metallurgical samples, and the hardness of components within the automotive industry is related to this question. Findings: The main aim of this paper is to determine if optical microscopy provides a reliable means to assess the combined carbon content. Research limitations/implications: For checking these items, the Optical Microscope will be used, density, hardness of sinter material, and particle size laser analysis of powder for creating the observed compact, and SEM microscope. Practical implications: This investigation provides standardised rules that can be implemented within any material laboratory. Originality/value: The analysis of powder particle size, hardness test, density check, and the investigation of the structure of powder element are presented.
Rocznik
Strony
15--21
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] R. Gilardi, L. Alzati, R. Oro, E. Hryha, L. Nyborg, S. Berg, L. Radicchi, Reactivity of Carbon Based Materials for Powder Metallurgy Parts and Hard Metal Powders Manufacturing, Journal of the Japan Society of Powder and Powder Metallurgy 63/7 (2016) 548-554. DOI: https://doi.org/10.2497/jjspm.63.548
  • [2] Combined carbon. Definition. Accessed in: 14.10.2020, Available from: https://www.merriam-webster.com/dictionary/combined%20carbon
  • [3] Metallography. Hoganas Handbook for Sintered Components, Hoganas, Sweden, 2015.
  • [4] Z. Pater, Fundamentals of metallurgy and foundry engineering, Politechnika Lubelska Publishing House, Lublin, 2014 (in Polish).
  • [5] P.S. Liu, G.F. Chen, Characterisation Methods: Basic Factors, in: P.S. Liu, G.F. Chen (eds), Porous Materials, Butterworth-Heinemann, Oxford, 2014, 411-492. DOI: https://doi.org/10.1016/B978-0-12-407788-1.00009-5
  • [6] Horizon Technology, Addressing porosity in powder metallurgy. Accessed in: 30.11.2020, Available from: https://www.horizontechnology.biz/blog/porosity-in-powder-metallurgy
  • [7] Pore Size Measurements for Powder Metallurgy Raw Materials. Accesed in: 30.11.2020, Available from: https://www.meritics.com/pore-size-measurements-powder-metallurgy
  • [8] M. Sejnoha, J. Zeman, Micromechanical modeling of imperfect textile composites, International Journal of Engineering Science 46/6 (2008) 513-526. DOI: https://doi.org/10.1016/j.ijengsci.2008.01.006
  • [9] MPIF 66: Sample Preparation for the Determination of the Total Carbon Content of Powder Metallurgy (PM) Materials (Excluding Cemented Carbides), Standard Test Methods for Metal Powders and Powder Metallurgy Products, Edition 2016.
  • [10] J. Gut, Shaping the microstructure and mechanical evaluation in the sintering evaluation process of alloyed Fe-Cr-Mo powders, Ph.D. Thesis, Cracow University of Technology, Cracow, 2009 (in Polish).
  • [11] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J.M. Torralba, Effect of carbon concentration on structure and properties of the gradient tool materials, Archives of Foundry 6/21(1/2) (2006) 141-148 (in Polish).
  • [12] MPIF 42: Determination of Density of Compacted or Sintered Powder Metallurgy (PM) Products, Standard Test Methods for Metal Powders and Powder Metallurgy Products, Edition 2016.
  • [13] MPIF 43: Determination of the Apparent Hardness of Powder Metallurgy Products, Standard Test Methods for Metal Powders and Powder Metallurgy Products, Edition 2016.
  • [14] W. Kiciński, S. Dyjak, Transition metal impurities in carbon-based materials, Pitfalls, artifacts and deleterious effects, Carbon 168 (2020) 748-845. DOI: https://doi.org/10.1016/j.carbon.2020.06.004
  • [15] MPIF 35. Materials Standards for PM Structural Parts, Edition 2018.
  • [16] ASTM E3-11(2017): Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2017.
  • [17] J. Hucińska (ed.), Metallurgy, Materials for laboratory exercises, Gdansk University of Technology Publishing House, Gdansk, 1995 (in Polish).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0da90fe1-ef98-41b2-b732-6013124164d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.