PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An influence of the covariance between single orbit parameters on the accuracy of observations of the pseudo-ranges and phase differences

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibilities to improve values of the satellite orbit elements by employing the pseudo-ranges and differences of carrier phase frequencies measured at many reference GPS stations are analysed. An improvement of orbit ephemeris is achieved by solving an equation system of corrections of the pseudo-ranges and phase differences with the least-squares method. Also, equations of space coordinates of satellite orbit points expressed by ephemeris at fixed moments are used. The relation between the accuracy of the pseudo-ranges and phase differences and the accuracy of the satellite ephemeris is analysed. Formulae for estimation of the influence of the ephemeris on the measured pseudo-ranges and phase differences and for prediction of the accuracy of the pseudo-ranges and phase differences were obtained. An influence of the covariance between single orbit parameters on the accuracy of the pseudo-ranges and phase differences is detected.
Rocznik
Strony
131--140
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wzory
Twórcy
  • Vilnius Gediminas Technical University, Institute of Geodesy, Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Institute of Geodesy, Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Institute of Geodesy, Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Institute of Geodesy, Vilnius, Lithuania
Bibliografia
  • [1] Teunissen, P., Montenbruck, O. (2017). Springer handbook of global navigation satellite systems. Springer
  • [2] Cai, C., He, C., Santerre, R., Pan, L., Cui, X., Zhu, J. (2016). A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Survey Review, 48(349), 287-295.
  • [3] Paziewski, J., Sieradzki, R., Wielgosz, P. (2015). Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing. Measurement Science and Technology, 26(9).
  • [4] Montenbruck, O., Steigenberger, P., Khachikyan, R., Weber, G., Langley, R.B., Mervart, L., Hugentobler, U. (2014). IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS, 9(1), 42-49
  • [5] Schönemann, E., Becker, M., Springer, T. (2011). A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J. Geod. Sci., 1(3), 201-214.
  • [6] Montenbruck, O., Gill, E., Kroes, R. (2005). Rapid orbit determination of LEO satellites using IGS clock and ephemeris products. GPS Solutions, 9(3), 226-235.
  • [7] Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. (2008). GNSS-global navigation satellite systems-GPS, GLONASS, Galileo, and more. Springer, Vienna.
  • [8] Heng, L. (2012). Safe satellite navigation with multiple constellations: global monitoring of GPS and GLONASS signal-in-space anomalies. Ph.D. Dissertation, Stanford University, 147.
  • [9] Cooley, B. (2013). GPS program updates. Proc. of ION GNSS+2013, Nashville, TN, 537-554.
  • [10] Bauer, S., Steinborn, J. (2019). Time bias service: analysis and monitoring of satellite orbit prediction quality. Journal of Geodesy, 1-11.
  • [11] Li, B., Zhang, Z., Shen, Y., Yang, L. (2018). A procedure for the significance testing of unmodeled errors in GNSS observations. J. Geod., 92, 1171.
  • [12] Warren, D.L., Raquet, J.F. (2003). Broadcast vs. precise GPS ephemerides: a historical perspective. GPS Solution, 7(3), 151-156.
  • [13] Montenbruck, O., Steigenberger, P., Hauschild, A. (2015). Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS Solutions, 19(2), 321-333.
  • [14] Cohenour, C., van Graas, F. (2011). GPS orbit and clock error distributions. Navigation, 58(1), 17-28.
  • [15] Heng, L., Gao, G.X., Walter, T., Enge, P. (2011). Statistical characterization of GPS signal-in-space errors. Proc. of ION ITM 2011, San Diego, CA, 312-319.
  • [16] Goldstein, D.B., Born, G.H., Axelrad, P. (2001). Real-time, autonomous, precise orbit determination using GPS. Navigation, 48(3), 155-168.
  • [17] Steiner, L., Meindl, M., Geiger, A. (2018). Characteristics and limitations of GPS L1 observations from submerged antennas. Journal of Geodesy, 93(2), 267-280.
  • [18] Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., Webb, F. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102(B3), 5005-5017.
  • [19] Lou, Y., Zhang, W., Wang, C., Yao, X., Shi, C., Liu, J. (2014). The impact of orbital errors on the estimation of satellite clock errors and PPP. Adv. Space. Res., 54(8), 1571-1580.
  • [20] Kouba, J., Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 12-28.
  • [21] Aghapour, E., Rahman, F., Farrell, J.A. (2018). Outlier Accommodation By Risk-Averse Performance-Specified Linear State Estimation. Decision and Control (CDC) IEEE Conference, 2310-2315.
  • [22] Roysdon, P.F., Farrell, J.A. (2017). Robust GPS-INS Outlier Accommodation: A Soft-thresholded Optimal Estimator. IFAC, 3574-3579.
  • [23] Zaminpardaz, S., Teunissen, P.J.G., Nadarajah, N. (2017). GLONASS CDMA L3 ambiguity resolution and positioning. GPS Solution, 21, 535-549.
  • [24] Li, Z., Yao, Y., Wang, J., Gao, J. (2017). Application of Improved Robust Kalman Filter in Data Fusion for PPP/INS Tightly Coupled Positioning System. Metrol. Meas. Syst., 24(2), 289-301.
  • [25] Zhang, Q., Zhao, L., Zhou, J. (2019). Improved classification robust Kalman filtering method for precise point positioning. Metrol. Meas. Syst., 26(2), 267-281.
  • [26] Bauer, M. (1994).Vermessung und Ortung mit Satelliten. Heidelberg: Wichman Verlag.
  • [27] Leick, A. (1995). GPS Satellite Surveying. New York: John Wiley and Sons.
  • [28] Teunissen, P.J.G., Kleusberg, A. (1998). GPS for Geodesy. Berlin, Heidelberg, New York: Springer Verlag.
  • [29] Teunissen, P.J.G. (1999). An optimality property of the integer least-squares estimator. Journal of Geodesy, 73, 275-284.
  • [30] Koch, K.R. (1997). Bemerkungen zu „Was ist Genauigkeit¿‘. Vermessungswesen und Raumordnung 59. Berlin: Springer Verlag, 362-370.
  • [31] Scwieger, V. (1999). Ein Elementarfehlermodell für GPS-Überwachungsmessungen-Konstruktion und Bedeutung interepochaler Korrelationen. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, 231, Hannover.
  • [32] Skeivalas, J. (2002). Accuracy of GPS observations linear models. Geodesy and Cartography, 188(2), Vilnius: Technika, 35-38.
  • [33] Parkinson, B.W., Spilker, J.J., Axelrad, P., Enge, P. (1996). Global Positioning Systems: Theory and Applications Volume I. Progress in Astronautics and Aeronautics, 163, 793.
  • [34] Bruyninx, C. (2004). The EUREF permanent network: a multi-disciplinary network serving surveyors as well as scientists. GeoInformatics, 7, 32-35
  • [35] Paršeliūnas, E., Kolosovskis, R., Putrimas, R., Būga, A. (2011). The analysis of the stability of permanent GPS station Vilnius (VLNS). Geodesy and Cartography. Vilnius: Technika. 37(3), 129-134.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0da6106a-219e-4c2a-97bd-3284f42a72a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.