PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

240+239Pu depositional signatures as a viable geochronological tool in the Amazon Basin

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anthropogenic radionuclide signatures associated with nuclear testing are increasingly utilized in environmental science to explore recent sedimentation. In this study, we assess the suitability of Pu radioisotope analysis in floodplain lake environments in the Amazon Basin to form geochronologies during the 20th century. The 240Pu + 239Pu ( 240+239Pu) signatures in six sediment cores indicate sediment accumulation rates in the floodplain lakes of the major rivers; Amazon (2.3 mm year–1 ), Tapajos (10.2 and 2.4 mm year–1 ) and Madeira (3.4, 4.2 and 6.2 mm year–1 ). The results from this study show that 240+239Pu fallout activities, and the well documented (240Pu/ 239Pu) atomic ratios of the above ground nuclear tests which began in the 1950’s, are sufficient and well preserved in Amazon floodplain lake sediments to infer chronologies. Lead-210 dating analyses in the same sediment cores producedv comparable sediment accumulation rates at three of the six sites. The differences between dating methods may be attributed to the different time scale these dating methods represent and/or in the solubility between Pb and Pu along the sediment column. The geochronologies derived from the 240+239Pu and 210Pb dating methods outlined in this work are of interest to identify the effects of changing sediment accumulation rates during the previous century as a result of development, including deforestation, along the Amazon Basin which increased towards the middle of the 20th century. This study shows that Pu dating provides a viable alternative geochronology tool for recent sediment accumulation (previous ~60 years) along the Amazon Basin.
Wydawca
Czasopismo
Rocznik
Strony
142--149
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
autor
  • School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
autor
  • School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
  • Department of Environmental Change, Linkoping University, Linkoping, Sweden
  • Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • National Marine Science Centre, Southern Cross University, Coffs Harbour, 2450 NSW, Australia
Bibliografia
  • 1. Abril JM, 2003. Constraints on the use of 137Cs as a time-marker to support CRS and SIT chronologies. Environmental Pollution 129: 31–37, DOI 10.1016/j.envpol.2003.10.004.
  • 2. Alhajji E, Ismail IM, Al-Masri MS, Salman N, Al-Haleem MA and Doubal AW, 2014. Sedimentation rates in the lake Qattinah using 210Pb and 137Cs as geochronometer. Geochronometria 41: 81–86, DOI 10.2478/s13386-013-0142-5.
  • 3. Appleby PG and Oldfield F, 1992. Application of lead-210 to sedimentation studies, p. 731–783. In M. Ivanovich and S. Harmon [eds.], Uranium Series Disequilibrium: Application to Earth, Marine and Environmental Science. Oxford Science Publications.
  • 4. Barlow J, Lennox GD, Ferreira J, Berenguer E, Lees AC, Nally RM, Thomson JR, Ferraz SFDB, Louzada J, Oliveira VHF, Parry L, Ribeiro De Castro Solar R, Vieira ICG, Aragaõ LEOC, Begotti RA, Braga RF, Cardoso TM, Souza RCDO Jr CM, Moura NG, Nunes SS, Siqueira JV, Pardini R, Silveira JM, Vaz-De-Mello FZ, Veiga RCS, Venturieri A and Gardner TA, 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535: 144–147, DOI 10.1038/nature18326.
  • 5. Blais JM and J Kalff, 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40: 582–588.
  • 6. Cao L, Ishii N, Zheng J, Kagami M, Pan S, Tagami K, and Uchida S, 2017. Vertical distributions of Pu and radiocesium isotopes in sediments from Lake Inba after the Fukushima Daiichi Nuclear Power Plant accident: Source identification and accumulation. Applied Geochemistry 78: 287–294, DOI 10.1016/j.apgeochem.2017.01.012.
  • 7. Everett SE, Tims SG, Hancock GJ, Bartley R and Fifield LK, 2008. Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment. Journal of Environmental Radioactivity 99: 383–393, DOI 10.1016/j.jenvrad.2007.10.019.
  • 8. Iurian AR, Dercon G, Adu-Gyamfi J, Mabit L, Kis-Benedek G, Ceccatelli A, Tarjan S and Blake W, 2015. The interception and washoff fraction of 7 Be by bean plants in the context of its use as a soil radiotracer. Journal of Radioanalytical and Nuclear Chemistry 306: 301–308, DOI 10.1007/s10967-015-3948-1.
  • 9. Junk WJ, Wittmann F, Schöngart J and Piedade MTF, 2015. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecology and Management 23: 677–693, DOI 10.1007/s11273-015-9412-8.
  • 10. Kelley JM, Bond LA and Beasley TM, 1999. Global distribution of Pu isotopes and 237Np. Science of the Total Environment 237–238: 483–500.
  • 11. Ketterer ME, Hafer KM, Jones VJ and Appleby PG, 2004a. Rapid dating of recent sediments in Loch Ness: Inductively coupled plasma mass spectrometric measurements of global fallout plutonium. Science of the Total Environment 322: 221–229, DOI 10.1016/j.scitotenv.2003.09.016.
  • 12. Ketterer ME, Hafer KM and Mietelski JW, 2004b. Resolving Chernobyl vs. global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry. Journal of Environmental Radioactivity 73: 183– 201, DOI 10.1016/j.jenvrad.2003.09.001.
  • 13. Ketterer ME and Szechenyi SC, 2008. Determination of plutonium and other transuranic elements by inductively coupled plasma mass spectrometry: A historical perspective and new frontiers in the environmental sciences. Spectrochimica Acta - Part B Atomic Spectroscopy 63: 719–737, DOI 10.1016/j.sab.2008.04.018.
  • 14. Leslie C and Hancock GJ, 2008. Estimating the date corresponding to the horizon of the first detection of 137Cs and 239+240Pu in sediment cores. Journal of Environmental Radioactivity 99: 483–490, DOI 10.1016/j.jenvrad.2007.08.016.
  • 15. Liao H, Bu W, Zheng J, Wu F and Yamada M, 2014. Vertical distributions of radionuclides (239+240Pu, 240Pu/239Pu, and 137Cs) in sediment cores of lake bosten in Northwestern China. Environmental Science and Technology 48: 3840–3846, DOI 10.1021/es405364m.
  • 16. Łokas E, Zwoliński Z, Rachlewicz G, Gąsiorek M, Wilkosz G and Samolej K, 2017. Distribution of anthropogenic and naturally occurring radionuclides in soils and lakes of Central Spitsbergen (Arctic). Journal of Radioanalytical and Nuclear Chemistry 311: 707–717, DOI 10.1007/s10967-016-5085-x.
  • 17. Lukšiene B, Maceika E, Tarasiuk N, Koviazina E, Filistovič V, Buivydas Š and Puzas A, 2014. On peculiarities of vertical distribution of 239,240Pu, 238Pu and 137Cs activity concentrations and their ratios in lake sediments and soils. Journal of Radioanalytical and Nuclear Chemistry 300: 277–286, DOI 10.1007/s10967-014-3026- 0.
  • 18. Mietelski JW, Kierepko R, Łokas E, Cwanek A, Kleszcz K, Tomankiewicz E, Mróz T, Anczkiewicz R, Szałkowski M, Wąs B, Bartyzel M and Misiak R, 2016a. Combined, sequential procedure for determination of 137Cs, 40K, 63Ni, 90Sr, 230,232Th, 234,238U, 237Np, 238,239+240Pu and 241Am applied for study on contamination of soils near Żarnowiec Lake (northern Poland). Journal of Radioanalytical and Nuclear Chemistry 310: 661–670, DOI 10.1007/s10967- 016-4835-0.
  • 19. Mietelski JW, Kierepko R, Łokas E, Cwanek A, Kleszcz K, Tomankiewicz E, Mróz T, Anczkiewicz R, Szałkowski M, Wąs B, Bartyzel M and Misiak R, 2016b. Combined, sequential procedure for determination of 137Cs, 40K, 63Ni, 90Sr, 230,232Th, 234,238U, 237Np, 238,239+240Pu and 241Am applied for study on contamination of soils near Żarnowiec Lake (northern Poland). Journal of Radioanalytical and Nuclear Chemistry 310: 661–670, DOI 10.1007/s10967-016-4835-0.
  • 20. Omokheyeke O, Sikoki FD, Laissaoui A, Akpuluma D, Onyagbodor PO, Benkdad A and Benmansour M, 2014. Sediment geochronology and spatio-temporal and vertical distributions of radionuclides in the Upper Bonny Estuary (South Nigeria). Geochronometria 41: 369–376, DOI 10.2478/s13386-013-0164-z.
  • 21. Pourcelot L, Louvat D, Gauthier-Lafaye F and Stille P, 2003. Formation of radioactivity enriched soils in mountain areas. Journal of Environmental Radioactivity 68: 215–233, DOI 10.1016/S0265- 931X(03)00051-1.
  • 22. Quinto F, Hrnecek E, Krachler M, Shotyk W, Steier P and Winkler SR, 2013. Determination of 239Pu, 240Pu, 241Pu and 242Pu at femtogram and attogram levels-evidence for the migration of fallout plutonium in an ombrotrophic peat bog profile. Environmental Sciences: Processes and Impacts 15: 839–847, DOI 10.1039/c3em30910j.
  • 23. Rowland L , Da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M and Meir P, 2015. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528: 119–122, DOI 10.1038/nature15539.
  • 24. Sanders CJ, Caldeira PP, Smoak JM, Ketterer ME, Belem A, Mendoza UMN, Cordeiro LGMS, Silva-Filho EV, Patchineelam SR and Albuquerque ALS, 2014a. Recent organic carbon accumulation (~100 years) along the Cabo Frio, Brazil upwelling region. Continental Shelf Research 75: 68–75, DOI 10.1016/j.csr.2013.10.009.
  • 25. Sanders CJ, Eyre BD, Santos IR, MacHado W, Luiz-Silva W, Smoak JM, Breithaupt JL, Ketterer ME, Sanders L, Marotta H and SilvaFilho E, 2014b. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophysical Research Letters 41: 2475–2480, DOI 10.1002/2014GL059789.
  • 26. Sanders CJ, Santos IR, Maher DT, Breithaupt JL, Smoak JM, Ketterer M, Call M, Sanders L and Eyre BD, 2016. Examining 239+240Pu, 210Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay, Australia. Journal of Environmental Radioactivity 151: 623–629, DOI 10.1016/j.jenvrad.2015.04.018.
  • 27. Sanders CJ, Smoak JM, Cable PH, Patchineelam SR and Sanders LM, 2011. Lead-210 and Beryllium-7 fallout rates on the southeastern coast of Brazil. Journal of Environmental Radioactivity 102: 1122–1125, DOI 10.1016/j.jenvrad.2011.07.008.
  • 28. Sanders CJ, Smoak JM, Sanders LM, Waters MN, Patchineelam SR and Ketterer ME, 2010. Intertidal mangrove mudflat 240+239Pu signatures, confirming a 210Pb geochronology on the southeastern coast of Brazil. Journal of Radioanalytical and Nuclear Chemistry 283: 593–596, DOI 10.1007/s10967-009-0418-7.
  • 29. Smoak JM, Demaster DJ, Kuehl SA, Pope RH and McKee BA, 1996. The behavior of particle-reactive tracers in a high turbidity environment: 234Th and 210 Pb on the Amazon continental shelf. Geochimica et Cosmochimica Acta 60: 2123–2137, DOI 10.1016/0016-7037(96)00092-0.
  • 30. Tims SG, Tsifakis D, Srncik M, Keith Fifield L, Hancock GJ and De Cesare M, 2013. Measurements of low-level anthropogenic radionuclides from soils around Maralinga. EPJ Web of Conferences, DOI 10.1051/epjconf/20136303010.
  • 31. Todorović D, Popović D, Ajtić J and Nikolić J, 2013. Leaves of higher plants as biomonitors of radionuclides (137Cs, 40K, 210Pb and 7 Be) in urban air. Environmental Science and Pollution Research 20: 525– 532, DOI 10.1007/s11356-012-0940-y.
  • 32. Wu F, Zheng J, Liao H, Yamada M and Wan G, 2011. Anomalous plutonium isotopic ratios in sediments of lake Qinghai from the Qinghai-Tibetan Plateau, China. Environmental Science and Technology 45: 9188–9194, DOI 10.1021/es202315c.
  • 33. Zheng J, Tagami K, Watanabe Y, Uchida S, Aono T, Ishii N, Yoshida S, Kubota Y, Fuma S and Ihara S, 2012. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Scientific Reports 2, DOI 10.1038/srep00304.
  • 34. Zheng J and Yamada M, 2004. Sediment core record of global fallout and bikini close-in fallout Pu in Sagami Bay, Western Northwest Pacific margin. Environmental Science and Technology 38: 3498– 3504, DOI 10.1021/es0351931.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d9ed78d-7913-4a38-b60e-2df3f09d3e58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.