PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of the state of research on bridge pier scour under combined action of waves and current

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a review of the state of research on bridge pier scour under combined wave–current flow. The hydrodynamics and scour around the bridge pier under combined wave–current flow have been explained in detail based on the information available in the literature. The impact of relative flow velocity (Ucw), Keulegan–Carpenter number (KC), absolute Reynolds number (Rea), and sediment characteristics on bridge pier scour under combined wave–current flow is presented. This study includes physical modelling of scour with various formulations to predict scour depth and calculation procedures related to scour under combined wave–current flow in the coastal environment. In addition, this study also provides the development of numerical models to investigate bridge pier scour in detail. In the end, future prospects of hydrodynamics and scour around the bridge pier under combined wave–current flow are delineated.
Czasopismo
Rocznik
Strony
2359--2379
Opis fizyczny
Bibliogr. 149 poz., rys.
Twórcy
autor
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
Bibliografia
  • 1. Abbasnia AH, Ghiassi R (2011) Improvements on bed-shear stress formulation for pier scour computation. Int J Numer Methods Fluids 67:383–402
  • 2. Afzal MS, Kumar L (2021) Propagation of waves over a rugged topography. J Ocean Eng Sci 7(1):14–28. https://doi.org/10.1016/j.joes.2021.04.004
  • 3. Afzal MS, Holmedal LE, Myrhaug D (2015) Three-dimensional streaming in the seabed boundary layer beneath propagating waves with an angle of attack on the current. J Geophys Res Ocean. https://doi.org/10.1002/2015JC010793
  • 4. Afzal MS, Bihs H, Kumar L (2020) Computational fluid dynamics modeling of abutment scour under steady current using the level set method. Int J Sediment Res 35:355–364. https://doi.org/10.1016/j.ijsrc.2020.03.003
  • 5. Afzal MS, Holmedal LE, Myrhaug D (2021) Sediment transport in combined wave–current seabed boundary layers due to streaming. J Hydraul Eng 147:4021007. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001862
  • 6. Afzal MA, Bihs H, Arntsen ØA (2014) 3D Numerical Modelling of Contraction Scour under Steady Current Using the Level Set Method. In: ICHE 2014. Proceedings of the 11th International Conference on Hydroscience and Engineering. pp 525–530.
  • 7. Agrawal KA, Khan MA, Yi Z (2005) Handbook of Scour Countermeasures Designs (No FHWA-NJ-2005–027). New Jersey Department of Transportation.
  • 8. Agui JH, Andreopoulos J (1992) Experimental investigation of a three-dimensional boundary layer flow in the vicinity of an upright wall mounted cylinder. J Fluids Eng 114(4):566–576. https://doi.org/10.1115/1.2910069
  • 9. Ali KHM, Karim O (2002) Simulation of flow around piers. J Hydraul Res 40:161–174
  • 10. Apsilidisl N, Diplas P, Dancey CL, et al (2010) Local scour at bridge piers: the role of reynolds number on horseshoe vortex dynamics. In: Proceedings 5th international conference on scour and Erosion (ICSE-5), 2010, San Francisco, USA. pp 86–94
  • 11. Arneson LA, Zevenbergen LW, Lagasse PF, Clopper PE (2012) Hydraulic Engineering Circular No 18: evaluating scour at bridges. US Dep Transp
  • 12. Azamathulla HM, Ghani AA, Zakaria NA, Guven A (2010) Genetic programming to predict bridge pier scour. J Hydraul Eng 136:165
  • 13. Baker VR (1979) Erosional processes in channelized water flows on Mars. J Geophys Res Solid Earth 84:7985–7993
  • 14. Belibassakis KA, Athanassoulis GA, Gerostathis TP (2001) A coupled-mode model for the refraction–diffraction of linear waves over steep three-dimensional bathymetry. Appl Ocean Res 23:319–336
  • 15. Bouratsis P, Diplas P, Dancey CL, Apsilidis N (2017) Quantitative spatio-temporal characterization of scour at the base of a cylinder. Water 9:227
  • 16. Breusers HNC, Nicollet G, Shen HW (1977) Local scour around cylindrical piers. J Hydraul Res 15:211–252
  • 17. Breusers HNC, Raudkivi AJ (1991) Scouring AA Balkema
  • 18. Chabert J, Engeldinger P (1956) Study of scour around bridge piers. Rep Prep Lab Natl d’Hydraulique
  • 19. Chen B, Li S (2018) Experimental Study of Local Scour around a vertical cylinder under wave-only and combined wave-current conditions in a large-scale flume. J Hydraul Eng 144:4018058
  • 20. Chiew Y-M (1992) Scour protection at bridge piers. J Hydraul Eng 118:1260–1269
  • 21. Chiew YM, Melville BW (1989) Local scour at bridge piers with non-uniform sediments. Proc Inst Civ Eng 87:215–224
  • 22. Chiew YM (1984) Local scour at bridge piers. ResearchSpace@ Auckland
  • 23. Craswell T, Akib S (2020) Reducing bridge pier scour using gabion mattresses filled with recycled and alternative materials. Eng 1(2):188–210
  • 24. Dargahi B (1989) The turbulent flow field around a circular cylinder. Exp Fluids 8:1–12
  • 25. Dargahi B (2003) Three-dimensional modelling of ship-induced flow and erosion. Proc Instit Civ EngWater Marit Eng 152(2):193–204
  • 26. Debnath K, Chaudhuri S (2010) Bridge pier scour in clay-sand mixed sediments at near-threshold velocity for sand. J Hydraul Eng 136(9):597–609
  • 27. Dey S (2001) Experimental studies on incipient motion of sediment particles on generalized sloping fluvial beds. J Sediment Res 16(3):391–398
  • 28. Dey S (2014) Fluvial hydrodynamics. Springer
  • 29. Dey S, Bose SK, Sastry GLN (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121(12):869–876
  • 30. Dey S, Sumer BM, Fredsøe J (2006) Control of scour at vertical circular piles under waves and current. J Hydraul Eng 132(3):270–279
  • 31. Dey S, Bose S, Sastry GLN (1992a) Clear water scour at circular piers, part I: Flow model. In Proceedings of the 8th Conference IAHR Asian and Pacific Division. pp. 69–80.
  • 32. Dey S, Bose S, Sastry GLN (1992b) Clear water scour at circular piers, part II: Flow model. In Proceedings of the 8th Conference IAHR Asian and pacific division. pp. 81–92
  • 33. Drake DE, Cacchione DA, Grant WD (1992) Shear stress and bed roughness estimates for combined wave and current flows over a rippled bed. J Geophys Res Ocean 97(C2):2319–2326
  • 34. Dyrseth S (2015) Time scales for scour below pipelines and around vertical piles in nonlinear random waves and current. NTNU.
  • 35. Eadie RW IV, Herbich JB (1987) Scour about a single, cylindrical pile due to combined random waves and a current. Coast Eng 206:1858–1870
  • 36. Ebersole BBA (1985) Refraction-diffraction model for linear water waves. J Waterw Port, Coast, Ocean Eng 111(6):939–953
  • 37. Engelund F, Fredsøe J (1976) A sediment transport model for straight alluvial channels. Hydrol Res 7(5):293–306
  • 38. Engelund F, Fredsøe J (1982) Hydraulic theory of alluvial rivers. Adv Hydrosci Elsev 13:187–215
  • 39. Escauriaza C, Sotiropoulos F (2011) Initial stages of erosion and bed form development in a turbulent flow around a cylindrical pier. J Geophys Res Earth Surf 116(3):109
  • 40. Ettema R, Constantinescu G, Melville BW (2017) Flow-field complexity and design estimation of pier-scour depth: sixty years since Laursen and Toch. J Hydraul Eng 143(9):3117006
  • 41. Ettema R (1980) Scour at bridge piers
  • 42. Fotherby LM (1993) Alternatives to riprap for protection against local scour at bridge piers. Tran Res Rec 1420:1–12
  • 43. Fredsoe J, Sumer BM, Arnskov MM, others (1991) Time scale for wave/current scour below pipelines. In: the first international offshore and polar engineering conference.
  • 44. Fredsoe J, Sumer BM (2006) Hydrodynamics around cylindrical structures (revised edition). World Scientific, Singapore
  • 45. Gautam S, Dutta D, Bihs H, Afzal MS (2021) Three-dimensional computational fluid dynamics modelling of scour around a single pile due to combined action of the waves and current using level-set method. Coast Eng 170:104002. https://doi.org/10.1016/j.coastaleng.2021.104002
  • 46. Gazi AH, Afzal MS, Dey S (2019) Scour around piers underwaves: current status of research and its future prospect. Water 11(11):1–14
  • 47. Ge L, Sotiropoulos F (2005) 3D unsteady RANS modeling of complex hydraulic engineering flows I: numerical model. J Hydraul Eng 131(9):800–808
  • 48. Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225(2):1782–1809. https://doi.org/10.1016/j.jcp.2007.02.017
  • 49. Ghorbani B, Kells JA (2008) Effect of submerged vanes on the scour occurring at a cylindrical pier. J Hydraul Res 46(5):610–619
  • 50. Graf WH, Istiarto I (2002) Flow pattern in the scour hole around a cylinder. J Hydraul Res 40(1):13–20
  • 51. Hartvig PA, Thomsen JM, Frigaard P, Andersen TL (2010) Experimental study of the development of scour and backfilling. Coast Eng J 52(02):157–194. https://doi.org/10.1142/S0578563410002154
  • 52. Heidarpour M (2002) Control and reduction of local scour at bridge piers by using slot. In: Proceeding International Conference on Fluvial Hydraulics. pp 3–6
  • 53. Hjorth P (1975) Studies on the nature of local scour. Inst. för Teknisk Vattenresurslära, Lunds Tekniska Högskola, Lunds Univ
  • 54. Hudspeth RT (2006) Waves and wave forces on coastal and ocean structures. World scientific, Singapure, p 109
  • 55. Hussein HJ, Martinuzzi RJ (1996) Energy balance for turbulent flow around a surface mounted cube placed in a channel. Phys Fluids 8(5):764–780
  • 56. Jia YY, Wang X, Wang SS (2002) Numerical simulation of local scouring around a cylindrical pier. First Int Conf Scour Foundat 17:1181–1187
  • 57. Jing L, Ridd PV (1996) Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay. Australia Coast Eng 29(1):169–186
  • 58. Jonsson IG (1990) Wave-current interactions. In: LeMehaute B, Hanes DM (eds) the sea, ocean engineering science Journal. Wile, New Sersey, pp 65–120
  • 59. Kawata Y, Tsuchiya Y (1989) Local scour around cylindrical piles due to waves and currents combined. Coast Eng 1988:1310–1322
  • 60. Keulegan GH, Carpenter LH et al (1958) Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stand 60(5):423–440
  • 61. Keutner C (1932) Stromungsvorgange an strompfeilern von verschiedenen grundrissformen und ihre einwirkung auf die flussohle. Die Bautechnik 10:161–170
  • 62. Kharif C, Pelinovsky E (2003) Physical mechanisms of the rogue wave phenomenon. Eur J Mech B/fluids 22(6):603–634
  • 63. Khosronejad A, Kang S, Borazjani I, Sotiropoulos F (2011) Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena. Adv Water Resour 34(7):829–843
  • 64. Khosronejad A, Kang S, Sotiropoulos F (2012) Experimental and computational investigation of local scour around bridge piers. Adv Water Resour 37:73–85
  • 65. Kim UY, Kim Jon-S, Ahn SJ, Hahm C-H (2005) Scour countermeasure using additional facility in front of bridge pier. Proc 31st IAHR Congr Seoul 1289–1290.
  • 66. Kirkil G, Constantinescu SG, Ettema R (2008) Coherent structures in the flow field around a circular cylinder with scour hole. J Hydraul Eng 134(5):572–587
  • 67. Kirkil G, Constantinescu G, Ettema R (2009) Detached eddy simulation investigation of turbulence at a circular pier with scour hole. J Hydraul Eng 135(11):888
  • 68. Kirkil G, Constantinescu SG, Ettema R (2005) The horseshoe vortex system around a circular bridge pier on a flat bed. In: XXXIst International association hydraulic research congress, Seoul, Korea.
  • 69. Kothyari UC, Kumar A (2010) Temporal variation of scour around circular bridge piers. ISH J Hydraul Eng 169(sup1):35–48
  • 70. Kumar V, Raju KGR, Vittal N (1999) Reduction of local scour around bridge piers using slots and collars. J Hydraul Eng 125(12):1302–1305
  • 71. Larsen BE, Fuhrman DR, Sumer BM (2016) Simulation of wave-plus-current scour beneath submarine pipelines. J Waterw Port Coast Ocean Eng 142(5):4016003
  • 72. Laursen EM, Toch A (1956) Scour around bridge piers and abutments. Iowa highway research board Ames, IA.
  • 73. Li J, Zhang B, Shen C, Fu X, Li W (2021) Experimental study on local scour depth around Monopile foundation in combined waves and current. Sustainability 13(24):13614
  • 74. Link O, Castillo C, Pizarro A, Rojas A, Ettmer B, Escauriaza C, Manfreda S (2017) A model of bridge pier scour during flood waves. J Hydraul Res 55(3):310–323
  • 75. Liu W, Wang B, Guo Y, Zhang J, Chen Y (2020) Experimental investigation on the effects of bed slope and tailwater on dam-break flows. J Hydrol 590:125256. https://doi.org/10.1016/j.jhydrol.2020.125256
  • 76. Mallory JK (2015) Abnormal Waves on the South East Coast of South Africa. Int Hydrogr Rev 51:105
  • 77. Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publication.
  • 78. Melville BW, Chiew Y-M (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125(1):59–65
  • 79. Melville BW, Raudkivi AJ (1977) Flow characteristics in local scour at bridge piers. J Hydraul Res 15(4):373–380
  • 80. Melville BW, Raudkivi AJ (1996) Effects of foundation geometry on bridge pier scour. J Hydraul Eng 122(4):203–209
  • 81. Melville BW (1975) Local scour at bridge sites. Researchspace @ auckland
  • 82. Mostafa YE, Agamy AF (2011) Scour around single pile and pile groups subjected to waves and currents. Int J Eng Sci Technol IJEST 3(11):8160–8178
  • 83. Nagata N, Hosoda T, Nakato T, Muramoto Y (2005) Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J Hydraul Eng 131(12):1074–1087
  • 84. Nielsen P (1992) Coastal bottom boundary layers and sediment transport. World scientific.
  • 85. Nurtjahyo PY (2002) Numerical simulation of pier scour and contraction scour. Dept of Civ Eng, Ocean Eng Prog 15:15
  • 86. Oliveto G, Hager WH (2002) Temporal evolution of clear-water pier and abutment scour. J Hydraul Eng 128(9):811–820
  • 87. Olsen NRB, Kjellesvig HM (1998) Three-dimensional numerical flow modelling for estimation of maximum local scour depth. IAHR J Hydraul Res 36(4):579–590
  • 88. Olsen NRB, Melaaen MC (1993) Three-dimensional calculation of scour around cylinders. J Hydraul Eng 119(9):1048–1054
  • 89. Paik J, Sotiropoulos F, Porté-Agel F (2009) Detached eddy simulation of flow around two wall-mounted cubes in tandem. Int J Heat Fluid Flow 30(2):286–305. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.006
  • 90. Park JH, Kim KH (2010) The local scour around a slender pile in combined waves and current. J Korean Soc Coast Ocean Eng 22(6):405–414
  • 91. Park C-W, Il PH, Cho Y-K (2017) Evaluation of the applicability of pier local scour formulae using laboratory and field data. Mar Georesources Geotechnol 35(1):1–7
  • 92. Parker G, Toro-Escobar C, Voigt Jr RL (1998) Countermeasures to protect bridge piers from scour.
  • 93. Peregrine DH (1976) Interaction of water waves and currents. Advances in applied mechanics. Elsevier, New Jersey, pp 9–117
  • 94. Petersen TU, Sumer BM, Fredsøe J (2012) Time scale of scour around a pile in combined waves and current. In: International Conference on Coastal Engineering. pp 30:08
  • 95. Porter K, Simons R, Harris J, Ferradosa TF (2012) Scour development in complex sediment beds. Coast Eng 2:33
  • 96. Qi W-G, Gao F-P (2014a) Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coast Eng 83:72–81
  • 97. Qi W, Gao F (2014b) Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci China Technol Sci 57:1030–1039
  • 98. Qi M, Li J, Chen Q (2016) Comparison of existing equations for local scour at bridge piers: parameter influence and validation. Nat Hazards 82(3):2089–2105
  • 99. Qi W, Gao F, Han X, et al (2012) Local scour and pore-water pressure around a monopile foundation under combined waves and currents. In: The Twenty-second International Offshore and Polar Engineering Conference.
  • 100. Quezada M, Tamburrino A, Niño Y (2019) Numerical study of the hydrodynamics of waves and currents and their effects in pier scouring. Water 11(11):2256
  • 101. Raaijmakers T, Rudolph D (2008) Time-dependent scour development under combined current and Waves conditions-laboratory experiments with online monitoring technique. In: proceedings 4th international conference on scour and erosion (ICSE-4). 5: 7, 2008, Tokyo, Japan. 152–161.
  • 102. Reeve D, Chadwick A, Fleming C (2018) Coastal engineering: processes, theory and design practice. CRC Press
  • 103. Richardson E V, Davis SR, others (2001) Evaluating scour at bridges.
  • 104. Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng 124(5):530–540
  • 105. Roelvink D (2011) A guide to modeling coastal morphology. Singapure, World scientific, pp 3–33
  • 106. Rooney DM, Machemehl JL (1977) Using suction to minimize sand-bed scour. J Hydraul Div 103(4):443–449
  • 107. Roper AT, Schneider VR, Shen HW (1967) Analytical approach to local scour, pre-congress. Proc Pap 3:10–19
  • 108. Roulund A, Sumer BM, Fredsøe J, Michelsen J (2005) Numerical and experimental investigation of flow and scour around a circular pier. J Fluid Mech 534:351–401
  • 109. Roulund A, Sutherland J, Todd D, Sterner J (2016) Parametric equations for Shields parameter and wave orbital velocity in combined current and irregular waves. 8 th international conference of scour and erosion. Taylor & Francis Group, Oxford, UK, pp 313–318
  • 110. Salaheldin TM, Imran J, Chaudhry MH (2004) Numerical modeling of three-dimensional flow field around circular piers. J Hydraul Eng 130(2):91–100
  • 111. Schendel A, Welzel M, Schlurmann T, Hsu T-W (2020) Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coast Eng 161:103751
  • 112. Shatanawi KM, Aziz NM, Khan AA (2008) Frequency of discharge causing abutment scour in South Carolina. J Hydraul Eng 134(10):1507–1512
  • 113. Sheppard DM, Melville B, Demir H (2014) Evaluation of existing equations for local scour at bridge piers. J Hydraul Eng 140(1):14–23
  • 114. Simarro G, Civeira S, Cardoso AH (2012) Influence of riprap apron shape on spill-through abutments. J Hydraul Res 50(1):138–141
  • 115. Simons DB, Chen Y-H, Swenson LJ (1984) Hydraulic test to develop design criteria for the use of Reno mattresses. Rep Maccaferri 3:12
  • 116. Soltani-Gerdefaramarzi S, Afzalimehr H, Chiew Y-M, Gallichand J (2014) Reduction of pier scour using bed suction and jet injection. In: proceedings of the institution of civil engineers-water management. 105–114.
  • 117. Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Oceanog Literat Rev 9(44):947
  • 118. Soulsby R (1997) Dynamics of marine sands. Oceanogr Literat Rev 9(44):947–1997
  • 119. Soulsby RL, Clarke S (2005) Bed shear-stress under combined waves and currents on smooth and rough beds (TR 137).
  • 120. Sumer BM, Fredsøe J (1997) Scour at the head of a vertical-wall breakwater. Coast Eng 29(3–4):201–230
  • 121. Sumer BM, Fredsøe J (2001) Scour around pile in combined waves and current. J Hydraul Eng 127(5):403–411
  • 122. Sumer B, Fredsøe J, Christiansen N (1992a) Scour around vertical pile in waves. J Waterw Port, Coastal, Ocean Eng 118(1):15–31. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(15)
  • 123. Sumer B, Christiansen N, Fredsøe J (1993) Influence of cross section on wave scour around piles. J Waterw Port, Coastal, Ocean Eng 119(5):477–495. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:5(477)
  • 124. Sumer BM, Christiansen N, Fredsøe J (1997) The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. J Fluid Mech 332:41–70
  • 125. Sumer BM, Whitehouse RJS, Tørum A (2001) Scour around coastal structures: a summary of recent research. Coast Eng 44(2):153–190
  • 126. Sumer BM, Hatipoglu F, Fredsøe J (2007) Wave scour around a pile in sand, medium dense, and dense silt. J Waterw Port, Coastal, Ocean Eng 133(1):14–27
  • 127. Sumer BM, Petersen TU, Locatelli L et al (2013) Backfilling of a scour hole around a pile in waves and current. J Waterw Port, Coastal, Ocean Eng 139(1):9–23
  • 128. Sumer BM, Fredsøe J, others (2002) Time scale of scour around a large vertical cylinder in waves. In: the twelfth international offshore and polar engineering conference.
  • 129. Sumer BM, Christiansen N, Fredsoe J, others (1992b) Time scale of scour around a vertical pile. In: the second international offshore and polar engineering conference.
  • 130. Tafarojnoruz A, Gaudio R, Dey S (2010) Flow-altering countermeasures against scour at bridge piers: a review. J Hydraul Res 48(4):441–452
  • 131. Tanaka S, Yano M (1967) Local scour around a circular cylinder.
  • 132. Tang Z, Melville B, Singhal N et al (2022) Countermeasures for local scour at offshore wind turbine monopile foundations: a review. Water Sci Eng 33:e101572
  • 133. Thomas GP, Klopman G (1997) Wave-current interactions in the near shore region. Int Ser Adv Fluid Mech 10:255–319
  • 134. Tison LJ (1940) Erosion autour des piles de ponts en riviere. In: Annales des Travaux publics de Belgique. pp 813–817
  • 135. Tseng M-H, Yen C-L, Song CCS (2000) Computation of three-dimensional flow around square and circular piers. Int J Numer Methods Fluids 34(3):207–227
  • 136. Umeda S (2011) Scour regime and scour depth around a pile in waves. J Coast Res 845–849
  • 137. Unger J, Hager WH (2007) Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp Fluids 42(1):1–19
  • 138. van Rijn LC (1984) Sediment transport, part II: suspended load transport. J Hydraul Eng 110:1613–1641
  • 139. van Rijn LC (1984) Sediment Transport, Part I: Bed Load Transport. J Hydraul Eng 110(10):1431–1457
  • 140. Wang J, Geng L, Ding L et al (2020) The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl Energy 267:114902
  • 141. Wang RK, Herbich JB (1983) Combined current and wave-produced scour around a single pile. Texas Engineering Experiment Station
  • 142. Wilcox DC (1994) Turbulence Modeling for {CFD}. DCW Industries Inc, La Canada, California
  • 143. Wu W, Wang SS (2002) Prediction of local scour of non-cohesive sediment around bridge piers using FVM-based CCHE2D Model. In: first international conference on scour of foundations. November 17–20, 2002, College Station, USA. pp 1176–1180.
  • 144. Yang Y, Melville BW, Macky GH, Shamseldin AY (2019) Local scour at complex bridge piers in close proximity under clear-water and live-bed flow regime. Water 11(8):1530
  • 145. Yang P, Li R, Pan L (2022) Effects of bed roughness on a horseshoe vortex in overland water flowing past a cylinder. J Hydrol 606:127385
  • 146. Yin Z, Wang Y, Jia Q (2019) Hydrodynamic Characteristics of a Pneumatic Breakwater with Combined Wave-Current Actions: A Numerical Investigation. J Coast Res 36(1):196–203. https://doi.org/10.2112/JCOASTRES-D-18-00140.1
  • 147. Younis MY, Zhang H, Hu B et al (2014) Investigation of different aspects of laminar horseshoe vortex system using PIV. J Mech Sci Technol 28(2):527–537
  • 148. Zeng J, Constantinescu G., Weber L (2005) A fully 3d non- hydrostatic model for prediction of flow, sediment transport and bed morphology in open channels. In: n proceedings of the 31st IAHR Congress, pp 1327–1338.
  • 149. Zhang W, Zapata MU, Bai X et al (2020) Three-dimensional simulation of horseshoe vortex and local scour around a vertical cylinder using an unstructured finite-volume technique. Int J Sediment Res 35(3):295–306
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d9d97ce-696b-4076-bba3-24614d575486
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.