PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wellposedness and long time behavior for a general class of Moore-Gibson-Thompson equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the well-posedness and the long time behavior of third order in time linear evolution equations, general and abstract version of the Moore-Gibson-Thompson system. We find sufficient but strong conditions that guarantee the exponential decay of the system and present some illustrative examples. Then, by comparing the behavior of the resolvent of the Moore-Gibson-Thompson system with the one of the resolvent of the wave equation with a frictional interior damping, we furnish weaker conditions that guarantee exponential, polynomial or even logarithmic decay of the solution of the Moore-Gibson-Thompson system in a bounded domain of Rn, n ≥ 1.
Słowa kluczowe
Rocznik
Strony
245--276
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Université polytechnique Hauts-de-France, LAMAV, FR CNRS 2956, F-59313 - Valenciennes Cedex 9 France
  • Université Ferhat Abbas, Sétif, Algérie
Bibliografia
  • Adams, R. A. (1975) Sobolev Spaces. Academic Press, New York.
  • Alves, M. O., Caixeta, A. H., Silva, M. A. J. and Rodrigues, J. H. (2018) Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach. Z. Angew. Math. Phys., 69(4): Paper No. 106, 19.
  • Arendt, W. Batty, C. J. K. Hieber, M. and Neubrander, F. (2001) Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics 96. Birkhäuser Verlag, Basel.
  • Bardos, C., Lebeau, G. and Rauch, J. (1989) Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques. Rend. Sem. Mat. Univ. Politec. Torino. (Special Issue): 11–31, 1988. Nonlinear hyperbolic equations in applied sciences.
  • Batty, C. J. K. and Duyckaerts, T. (2008) Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ., 8(4):765–780.
  • Borichev, A. and Tomilov, Y. (2010) Optimal polynomial decay of functions and operator semigroups. Math. Ann., 347(2):455–478.
  • Burq, N. and Hitrik, M. (2007) Energy decay for damped wave equations on partially rectangular domains. Math. Res. Lett., 14(1):35–47.
  • Caixeta, A. H., Lasiecka, I. and Cavalcanti, V. N. D. (2016a) Global attractors for a third order in time nonlinear dynamics. J. Differential Equations, 261(1): 113–147.
  • Caixeta, A. H., Lasiecka, I. and Domingos Cavalcanti, V. N. (2016b) On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evol. Equ. Control Theory, 5(4):661–676.
  • Conejero, J. A., Lizama, C. and Rodenas, F. (2015) Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation. Appl. Math. Inf. Sci., 9(5):2233–2238.
  • Datko, R. Extending a theorem of A. M. Liapunov to Hilbert space (1970) J. Math. Anal. Appl. 32:610–616.
  • Grisvard, P. (1985) Elliptic Problems in Nonsmooth Domains. Pitman, Boston–London–Melbourne.
  • Haraux, A. (1989) Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal. Math., 46(3):245–258.
  • Huang, F. L. (1985) Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differential Equations, 1(1):43–56.
  • Kaltenbacher, B. (2015) Mathematics of nonlinear acoustics. Evol. Equ. Control Theory, 4(4):447–491.
  • Kaltenbacher, B. and Lasiecka, I. (2012) Exponential decay for low and higher energies in the third order linearMoore-Gibson-Thompson equation with variable viscosity. Palest. J. Math., 1(1):1–10.
  • Kaltenbacher, B., Lasiecka, I. and Marchand, R. (2011)Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control Cybernet., 40(4):971–988.
  • Kaltenbacher, B., Lasiecka, I. and Pospieszalska, M. K. (2012) Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound. Math. Models Methods Appl. Sci., 22(11):1250035, 34.
  • Kaltenbacher, B. and Nikolic, V. (2019) The Jordan–Moore–Gibson–Thompson equation: wellposedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time. Math. Models Methods Appl. Sci., 29(13):2523–2556.
  • Kuznetsov, N. and Nazarov, A. (2015) Sharp constants in the Poincaré, Steklov and related inequalities (a survey). Mathematika, 61(2):328–344.
  • Lasiecka, I. and Wang, X. (2015) Moore-Gibson-Thompson equation with memory, part II: General decay of energy. J. Differential Equations, 259(12):7610–7635.
  • Lasiecka, I. and Wang, X. (2016) Moore-Gibson-Thompson equation with memory, part I: exponential decay of energy. Z. Angew. Math. Phys., 67(2): Art. 17, 23.
  • Lebeau, G. (1996) Équation des ondes amorties. In: Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud. Kluwer Acad. Publ., Dordrecht, 73–109.
  • Lions, J.-L. (1988) Contrôlabilité exacte, perturbations et stabilisation de systè-mes distribués, 1, 8. Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 8. Masson, Paris.
  • Liu, K. (1997) Locally distributed control and damping for the conservative systems. SIAM J. Control Optim., 35(5):1574–1590.
  • Liu, S. and Triggiani, R. (2014) Inverse problem for a linearized Jordan-Moore-Gibson-Thompson equation. In: New Prospects in Direct, Inverse and Control Problems for Evolution Equations. Springer INdAM Ser., 10. Springer, Cham, 305–351.
  • Liu, Z. and Rao, B. (2005) Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys., 56(4):630–644.
  • Marchand, R., McDevitt, T. and Triggiani, R. (2012) An abstract semi-group approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math. Methods Appl. Sci., 35(15): 1896–1929.
  • Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Math. Sciences, 44. Springer-Verlag, New York.
  • Pellicer, M. and Said-Houari, B. (2019) Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Appl. Math. Optim., 80(2): 447–478.
  • Pellicer, M. and Solà-Morales, J. (2019) Optimal scalar products in the Moore-Gibson-Thompson equation. Evol. Equ. Control Theory, 8(1): 203–220.
  • Phung, K. D. (2007) Polynomial decay rate for the dissipative wave equation. J. Differential Equations, 240(1):92–124.
  • Prüss, J. (1984) On the spectrum of C0-semigroups. Trans. Amer. Math. Soc., 284(2):847–857.
  • Rauch, J. and Taylor, M. (1974) Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J., 24:79–86.
  • Rousseau, J. L. and Lebeau, G. (2012) On carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, 18(3):712–747.
  • Schwartz, L. (1966) Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris.
  • Stahn, R. (2017) Optimal decay rate for the wave equation on a square with constant damping on a strip. Z. Angew. Math. Phys., 68(2):Art. 36, 10.
  • Zuazua, E. (1990) Exponential decay for the semilinear wave equation with locally distributed damping. Comm. in PDE, 15:205–235.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d9ad5ab-2603-439d-a991-3e698e2e976a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.