PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and Characterization of CL-20/EPDM by a Crystal Refinement and Spray Drying Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) based mixed explosive was prepared by a spray drying method using CL-20 suspended in hexane containing EPDM rubber (ethylene-propylene-diene monomer), and made into a stable suspension. The samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and their thermal stability and impact sensitivity were also measured. The results showed that the ethylene-propylene-diene-monomer rubber (EPDM) can be successfully coated on to the CL-20 crystal surface. Compared to refinement-spray CL-20, the impact sensitivity of CL-20/EPDM was significantly reduced. The characteristic drop height was increased from 28.12 to 39.78 cm. The thermal stability was better than refinement-spray CL-20.
Rocznik
Strony
831--840
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan 030051, China
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan 030051, China
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan 030051, China
Bibliografia
  • [1] Nair U.R., Sivabalam R., Gore G.M., Geetha M., Asthana S.N., Singh H., Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based Formulations (Review), Combustion, Explosion, and Shock Waves, 2005, 4(2), 121-132.
  • [2] Geetha M., Nair U.R., Sarwade D.B., Gore G.M., Asthana S.N., Singh H., Studies on CL-20: the Most Powerful High Energy Material, J. Therm. Anal. Calorim., 2003, 73(3), 913-922.
  • [3] Ou Y.X., Meng Z., Liu J.Q., Review of the Development of Application Technologies of CL-20, Chem. Ind. Eng. Prog. (Beijing, China), 2007, 26(12), 1690-1694.
  • [4] Burnham A.K., Weese R.K., Kinetics of Thermal Degradation of Explosive Binders Viton A, Estane, and Kel-F, Thermochim. Acta, 2005, 426(1-2), 85-92.
  • [5] Guo X.D., Ouyang G., Liu J., Li Q., Wang L.X., Gu Z.M., Li F.S., Massive Preparation of Reduced-sensitivity Nano CL-20 and its Characterization, J. Energ. Mater., 2015, 33(1), 24-33.
  • [6] Bayat Y., Zarandia M., Zareia M.A., Soleymanb R., Zeynalic V., A Novel Approach for Preparation of CL-20 Nanoparticles by Microemulsion Method, J. Mol. Liq., 2014, 193, 83-86.
  • [7] Sivabalan R., Gore G.M., Nair U.R., Saikia A., Venugopalan S., Gandhe B.R., Study on Ultrasound Assisted Precipitation of CL-20 and its Effect on Morphology and Sensitivity, J. Hazard. Mater., 2007, A139, 199-203.
  • [8] Song X.L., Wang Y., An C.W., Guo X.D., Li F.S., Dependence of Particle Morphology and Size on the Mechanical Sensitivity and Thermal Stability of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Hazard. Mater., 2008, 159(2-3), 222-229.
  • [9] Li J., Brill T.B., Nanostructured Energetic Composites of CL-20 and Binders Synthesized by Sol Gel Methods, Propellants Explos. Pyrotech, 2006, 31(1), 61-69.
  • [10] Li J.L., Wang J.Y., An C.W., Li X.D., Coating of CL-20 by EPDM and its Characterization (in Chinese), Chin. J. Explos. Propellants, 2012, 35(1), 23-26.
  • [11] Wang H.J., The Choice and Application of Binder in New Energetic Matierals, Appl. Mech. Mater., 2013, 330, 3-7.
  • [12] Ning N.Y., Ma Q., Zhang Y.Q., Zhang L.Q., Wu H.G., Tian M., Enhanced Thermooxidative Aging Resistance of EPDM at High Temperature by Using Synergistic Antioxidants, Polym. Degrad. Stab., 2014, 102, 1-8.
  • [13] Xu W.Z., An C.W., Wang J.Y., Preparation and Properties of an Insensitive Booster Explosive Based on LLM-105, Propellants, Explosives, Pyrotechnics, 2013, 38(1), 136-141.
  • [14] Silvpulle M.J., On the Existence of Maximum Likelihood Estimation for the Binomial Response Models, Journal of the Royal Statistical Society B, 1981, 43, 310-313.
  • [15] Chen H.X., Chen S.S., Li L.J., Jin S.H., Quantitative Determination of ε-Phase in Polymorphic HNIW using X-ray Diffraction Patterns, Propellants Explos. Pyrotech. 2008, 33(6), 467-471.
  • [16] Wang J.Y., Li J.L., An C.W., Hou C.H., Xu W.Z., Li X.D., Study on Ultrasound and Spray-assisted Precipitation of CL-20, Propellants Explos. Pyrotech., 2012, 37(6), 670-675.
  • [17] Foltz M.F., Coon C.L., Garcia F., Nichols A.L., The Thermal stability of the Polymorphs of Hexanitro-hexaazaisowurtzitane, Propellants, Explos. Pyrotech., 1994, 19(3), 19-25.
  • [18] Turcotte R., Vachon M., Kwok Q.S.M., Wang R.P., Jones D.E.G., Thermal Study of HNIW (CL-20), Thermochim. Acta, 2005, 433(1-2), 105-115.
  • [19] Yang R.T., Steinberg M., Reaction Kinetics and Differential Thermal Analysis, J. Phys. Chem., 1976, 80(9), 965-968.
  • [20] Li J.J. , Wang X.G., Hu R.Z., Kang B., Ou Y.X., Chen B.R., The Thermal Behavior of Powder Emulsion Explosives, J. Therm. Anal. Calorim., 2013, 45(1-2), 261-268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d96298d-19c5-43da-bc09-685babb69c4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.