Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we identify those shifts (continuous functions) of the term structure of interest rates, against which a given bond portfolio (BP) is immunized. The set of such shifts (IMMU) happens to be an (m − 1)-dimensional linear subspace in an m-dimensional linear space of all admissible shifts. In the proof we use triangular (Lagrange) functions, by means of which we build a base for IMMU. How this IMMU space varies in response to changes in the cash flow generated by bond portfolio, BP, is also discussed in the last section of the paper.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
525--537
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Institute of Finance, Vistula University, Stoklosy 3, 02-787 Warsaw, Poland
autor
- Department of Finance and Risk Management, Warsaw University of Technology, Ludwika Narbutta 85, 00-999 Warsaw, Poland
Bibliografia
- [1] BANSAL, R. and ZHOU, H. (2002) Term structure of interest rates with regime shifts. Journal of Finance 57, 1997–2043.
- [2] BARBER, J.R. (1999) Bond immunization for affine term structures. Financial Review 34, 127–140. BARBER, J.R. (2013) Immunization and convex interest rate shifts. Control and Cybernetics 42, 259–266.
- [3] DIAZ, A., GONZ´ALEZ, M. D. L. O., NAVARRO, E., and SKINNER, F. S. (2009) An evaluation of contingent immunization. Journal of Banking and Finance 33, 1874–1883.
- [4] FISHER, L. and WEIL, R. (1971) Coping with the Risk of Interest Rate Fluctuations: Returns to Bondholders from Naive and Optimal Strategies. Journal of Business 44(3), 408–431.
- [5] HO, T. S. Y. (1992) Key rate durations: Measures of interest rate risks. Journal of Fixed Income 2(2), 29–44.
- [6] LEIBOWITZ, M. and WEINBERGER, A. (1982) Contingent immunizationpart I: risk control procedures. Financial Analysts Journal 36, 17–31.
- [7] LEIBOWITZ, M. and WEINBERGER, A. (1983) Contingent immunizationpart II: problem areas. Financial Analysts Journal 39, 35–50.
- [8] MACAULAY, R. F. (1938) Some Theoretical Problems Suggested by the Movements of Interest Rates, Bond Yields and Stock Prices in the U.S. Since 1856. National Bureau of Economic Research, New York.
- [9] REDINGTON, F. M. (1952) Review of the Principle of Life Office Valuations. Journal of the Institute of Actuaries 18, 286–340.
- [10] RZĄDKOWSKI G. and ZAREMBA, L.S. (2000) New Formulas for Immunizing Durations. The Journal of Derivatives 8(2), 28–36.
- [11] RZĄDKOWSKI G. and ZAREMBA, L. S. (2010) Shifts of the term structure of interest rates against which a given portfolio is preimmunized. Control and Cybernetics 39, 857–867.
- [12] SCHAUDER, J. (1928) Eine Eigenschaft des Haarschen Orthogonalsystems. Mathematische Zeitschrift 28, 317–320. SEMADENI, Z. (1982) Schauder bases in Banach spaces of continuous functions. Lecture Notes in Mathematics 918, Springer Verlag, Berlin.
- [13] SOTO, G. M. (2001) Immunization derived from a polynomial duration vector in the Spanish bond market. Journal of Banking and Finance 25, 1037– 1057.
- [14] ZHENG, H. (2006) Hedging with Minimum Risk Duration. Published on the web page http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.203. 5629&rep=rep1&type=PDF
- [15] ZHENG, H. (2007) Macaulay durations for nonparallel shifts. Annals of Operations Research 151(1), 179–191.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d954d12-71d0-40aa-bc89-356ddba0b903