Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Ocena jakości satelitarnych stacji laserowych działających w roku 2020
Języki publikacji
Abstrakty
The paper assesses the quality of satellite laser ranging stations that were operational in 2020. The assessment is based on the results obtained from the LAGEOS-1 and LAGEOS-2 satellites between 2011 and 2020. In 2020, 41 SLR stations conducted laser observations on both LAGEOS satellites. Out of these stations, 20 had been making observations for ten years, while some stations started their observations during this period, resulting in a shorter observation period. NASA's GEODYN-II orbital software was used to compute the satellite orbits for fifteen core stations. The accuracy of the observations from each station was evaluated by determining the stability of the designated coordinates (3DRMS) in the International Terrestrial Reference Frame 2020. The results show that 16 stations achieved accuracy ranging from 4 mm to 10 mm, 17 stations between 10 mm and 15 mm, and 8 stations above 15 mm. Similarly, the standard deviation of the determined coordinates ranged from 1.0 mm to 2.6 mm, from 3.0 mm to 4.0 mm, and above 4.0 mm, respectively. The discussion focuses on the reasons for the inadequate accuracy in determining the coordinates for most stations. These reasons include a lack of sufficient normal points for most stations, a significant random scatter of normal points in the orbit, and insufficient long-term stability of systematic deviations. It is important to note that the results for both LAGEOS satellites are highly consistent.
W pracy przedstawiono ocenę jakości stacji laserowych działających w roku 2020 na podstawie wyników uzyskanych dla satelitów LAGEOS-1 i LAGEOS-2 w latach 2011-2020. W 2020 roku obserwacje laserowe obu satelitów LAGEOS prowadziło 41 stacji SLR, z czego 20 stacji zrealizowały obserwacje w ciągu dziesięciu lat, pozostałe stacje rozpoczynały obserwacje w tym okresie, stąd krótszy okres obserwacji. Orbity satelitów zostały obliczone za pomocą programu orbitalnego GSFC NASA GEODYN-II dla wybranych piętnastu najlepszych stacji. Dokładność obserwacji poszczególnych stacji oceniono na podstawie stabilności wyznaczonych współrzędnych (3DRMS) w układzie International Terrestrial Reference Frame 2020. Wyniki pokazują, że 16 stacji uzyskało dokładność w zakresie od 4 mm do 10 mm, 17 stacji od 10 mm do 15 mm i 8 stacji powyżej 15 mm. Podobny rozkład przedstawia odchylenie standardowe wyznaczonych współrzędnych, odpowiednio od 1,0 mm do 2,6 mm, od 3,0 mm do 4,0 mm i powyżej 4,0 mm. Omówiono przyczyny niewystarczającej jakości wyznaczania współrzędnych dla większości stacji, do których należy zaliczyć zbyt małą ilość punktów normalnych, duży rozrzut przypadkowy punktów normalnych na orbicie, niewystarczającą stabilność odchyleń systematycznych. Należy podkreślić, że wyniki dla obu satelitów LAGEOS są bardzo zgodne.
Czasopismo
Rocznik
Tom
Strony
157--179
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Space Research Center Polish Academy of Sciences
autor
- Space Research Center Polish Academy of Sciences
autor
- Space Research Center Polish Academy of Sciences
autor
- Space Research Center Polish Academy of Sciences
Bibliografia
- Altamimi Z., Rebischung P., Collilieux X., Métivier L., Chanard K., ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions, “J Geod” 2023, 97(47). https://doi.org/10.1007/s00190-023-01738-w.
- Altamimi Z., Rebischung P., Collilieux X., Métivier L., Chanard K., ITRF2020 [Data set]. IERS ITRS Center Hosted by IGN and IPGP 2022, https://doi.org/10.18715/IPGP.2023. LDVIOBNL.
- Borkowski K.M., Accurate algorithms to transform geocentric to geographic coordinates, “Bull. Geod.” 1989, 63, 50-56.
- CDDIS (2009) SLR and GPS (and Plate Tectonic and Earthquakes), NASA. Available online: http://cddis.nasa.gov/docs/2009/HTS_0910.pdf (accessed on 11 November 2023).
- Degnan J., Milimeter Accuracy Satellite Laser Ranging: a Review, “Contribution of Space Geodesy for Geodynamics: Technology Geodynamics” 1993, 25, 133-162.
- DGFI (2023) DGFI-TUM ILRS Analysis Centre. Available online: https://www.dgfi.tum. de/en/international-services/ilrs/ (accessed on 15 September 2023).
- Drożdżewski M., Sośnica K., Satellite laser ranging as a tool for the recovery of tropospheric gradients, “Atmospheric Research” 2018, 212, 33-42. DOI: 10.1016/j.atmosres.2018.04.028.
- Drożdżewski M., Sośnica K., Tropospheric and range biases in Satellite Laser Ranging, “J. Geodesy” 2021, 95, 100-117. DOI: 10.1007/s00190-021-01554-0.
- Drożdżewski M., Sośnica K., Zus F., Balidakis K.,Troposphere delay modeling with horizontal gradients for satellite laser ranging, “J. Geodesy” 2019, 93, 1853-1866. DOI: 0.1007/s00190-019-01287-1.
- Geoscience Hitotsubashi: Multi-Satellite Bias Analysis Report. Available online: https://geo.science.hit-u.ac.jp/slr/bias/ (accessed on 15 September 2023). ILRS ASC Product and Information Server. Available online: http://geodesy.jcet.umbc. edu/ILRS_AWG_MONITORING/ (accessed on 10 October 2023).
- ILRS Monthly/Quarterly Global Performance Report Card. Available online: https://ilrs.gsfc.nasa.gov/network/system_performance/global_report_cards/quarterly/ (accessed on 10 October 2023).
- ITRF2020-IGN. Available on line: https://itrf.ign.fr/en/solutions/ITRF2020 (accessed on 20 September 2023).
- McCarthy D.D., Petit G., (Eds.), IERS Conventions (2003), IERS Technical Note No. 32. International Earth Rotation and Reference Systems Service, Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, Germany, 2004.
- Mendes V.B., Pavlis E.C., High-accuracy zenith delay prediction at optical wavelengths, “Geophys. Res. Lett.” 2004, 31, L14602. https://doi.org/10.1029/2004GL020308.
- Mendes V.B., Prates G., Pavlis E.C., Pavlis D.E., Langley R.B., Improved mapping functions for atmospheric refraction in SLR, “Geophys. Res. Lett.” 2002, 29, 10, 1414, 53- 1-53-4. https://doi.org/10.1029/2001GL014394.
- NASA (2014) How Satellite Laser Ranging got its start 50 years ago. Available online: https://www.nasa.gov/content/goddard/laser-ranging-50-years (accessed on 11 November 2023).
- Otsubo T., Müller H., Pavlis, E.C., et al., Rapid response quality control service for the laser ranging tracking network, “J Geodesy” 2019, 93, 2335-2344. https://doi. org/10.1007/s00190-018-1197-0.
- Pavlis D.E., Luo S., Dahiroc P., et al., GEODYN II System Description, Hughes STX Contractor Report, Greenbelt, Maryland, USA, 1998.
- Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K., An Earth Gravitational Model to Degree 2160:EGM2008. Presented at the 2008 General Assembly of the European Geoscience Union, Vienna, Austria, 13 April 2008.
- Pearlman M., Arnold D., Davis, M., et al., Laser geodetic satellites: a high-accuracy scientific tool, “J. Geodesy” 2019, 2181-2194. https://doi.org/10.1007/s00190-019- 01228-y.
- Pearlman M.R., Degnan J.J., Bosworth J.M., The International Laser Ranging Service, “Adv. Space Res.” 2002, 30(2), 135-143. https://doi.org/10.1016/S0273- 1177(02)00277-6.
- Pearlman M.R., Noll C.E., Pavlis E.C., Lemoine F.G., Combrink L., Degnan J.D., Kirchner G., Schreiber U., The ILRS: approaching 20 years and planning for the future, “J. Geodesy” 2019, 93, 2161-2180. DOI:10.1007/s00190-019-01241-1.
- Petit G., Luzum B., (Eds.), IERS Conventions, IERS Technical Note No. 36. International Earth Rotation and Reference Systems Service, Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, Germany, 2010.
- Ray R.D., A global Ocean Tide Model from TOPEX/POSEIDON Altimetry: GOT99.2, “NASA/TMm1999-200478” 1999, 1-66. 19990089548.pdf.
- Schillak S., Satarowska A., Sankowski D., Michałek P., Analysis of the Results Determining the Positions and Velocities of Satellite Laser Ranging Stations during Earthquakes in 2010-2011, Remote Sens. 2023, 15, 3659. https://doi.org/10.3390/rs15143659.
- SLRF2020 Available online: https://ilrs.gsfc.nasa.gov/docs/2023/SLRF2020_POS+VEL_2023.10.02.snx (accessed on 14 November 2023).
- Standish E.M., Newhall X.X., Williams J.G., Folkner W.F., JPL Planetary and Lunar Ephemerides DE403/LE403, “JPL IOM” 1995, 31, 10-127.
- The ILRS contribution to ITRF2020. E. Pavlis (GESTAR II/UMBC & NASA Goddard 61A), V. Luceri (e-GEOS S.p.A., ASI/CGS) https://itrf.ign.fr/docs/solutions/itrf2020/The_ILRS_contribution_to_ITRF2020_description_2022.09.23.pdf.
- Torrence M.H., Klosko S.M., Christodoulidis D.C., The construction and testing of normal point at Goddard Space Flight Center, In Proceedings of 5th International Workshop on Laser Ranging Instrumentation, Herstmonceux, UK, 10 September 1984, 506-516. https://ilrs.gsfc.nasa.gov/about/reports/workshop/lw05.html.
- Zimmerwald: ILRS Combined Range Bias Report. Available online: http://ftp.aiub. unibe.ch/slr/summary_report.txt (accessed on 15 September 2023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d942c15-3602-4db5-b2c7-10396a9ec2b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.