PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical properties of neodymium tin oxide pyrochlore ceramics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, physical properties of neodymium tin oxide pyrochlore ceramics prepared by solid state reaction technique are investigated by means of X-ray diffraction, scanning electron microscopy, ultraviolet-visible light (UV-Vis) spectrophotometry and temperature dependent electrical resistivity measurements. The pyrochlore is observed to have a cubic FCC crystal lattice with lattice parameter of 10.578 A. The planes of the cubic cell are best oriented in the [2 2 2] direction. From the X-ray, the UV-Vis spectrophotometry and the electrical resistivity data analysis, the grain size, strain, dislocation density, optical and thermal energy band gaps, localized energy band tail states and resistivity activation energies are determined and discussed. The pyrochlore is observed to have an optical energy band gap of ∼3.40 eV. This value corresponds to 365 nm UV light spectra which nominates the neodymium tin oxide pyrochlore ceramics for the use as UV sensors.
Wydawca
Rocznik
Strony
534--538
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Department of Physics, Arab-American University, Jenin, West Bank, Palestine
  • Department of Physics, Arab-American University, Jenin, West Bank, Palestine
  • Group of Physics, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
autor
  • Metallurgical and Materials Engineering Dept., Marmara University, 34722 Istanbul, Turkey
autor
  • Metallurgical and Materials Engineering Dept., Marmara University, 34722 Istanbul, Turkey
Bibliografia
  • [1] WANG Y., CHEN Y., YAO SH., WU CH., Ceram. Int., 40 (2014), 2641.
  • [2] QIN G., GAO F., JIANG Q., LIU Y., LI Y., LUO L., ZHAO K., ZHAO H., Phys. Chem. Chem. Phys. 18 (2016), 5537.
  • [3] TRACY C. L., Systematic study of the phase behaviour of f-block oxides irradiated with swift heavy ions, Ph.D. thesis, Materials Science and Engineering, the University of Michigan (2015).
  • [4] TONG Y.P., CHEN X., ZHAO S.B., LU L.D., Appl. Mech. Mater., 238 (2012), 79.
  • [5] ALEMI A., KALAN R.E., Sci. Plasm. Technol., 163 (2008), 229
  • [6] KAMEL N., MOUDIR D., KAMEL Z., AIT-AMAR H., J. Mater. Sci. Eng. B-Adv., 3 (2013), 1.
  • [7] FENG J., XIAO B., QU Z.X., ZHOU R., PAN W., Appl. Phys. Lett., 99 (2011), 201909.
  • [8] EWING R.C., LIAN J., WANG L.M., MRS Proc., (2003), 792.
  • [9] KOLEKAR Y.D., KULKARNI S.B., CHAKRABORTHY K., DAS A., PARANJPE S.K., JOSHI P.B., Pramana-J. Phys., 63 (2004), 189.
  • [10] QASRAWI A.F., KMAIL R.R.N., MERGEN A., GENC S.I., J. Electroceram., 37 (2017) 8.
  • [11] WANG J., LAHA A. , FISSEL A., SCHWENDT D., DARGIS R., WATAHIKI T., SHAYDUK R., BRAUN W., LIU T., OSTEN J.H., 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009, NEMS 2009.
  • [12] DEROUANE E.G., Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, challenges and opportunities, Vol. 191, NATO Science series, Vilamoura, Portogal, 2003, p. 312.
  • [13] AL GARNI S.E., QASRAWI A.F., MERGEN A., Ceram. Int., 42 (2016) 3372.
  • [14] MATSUOKA T., Adv. Mater., 8 (1996), 469.
  • [15] PETIT L., SVANE A., SZOTEK Z., TEMMERMAN W.M., Phys. Rev., 72 (2005), 205118.
  • [16] EL-MALLAWANY R., ABDALLA M.D., AHMED I. A.S, Mater. Chem. Phys., 109 (2008), 291.
  • [17] DOW J.D., REDFIELD D., Phys. Rev. B, 5(1972), 594.
  • [18] CAGLARA Y., ILICAN S., CAGLAR M., Eur. Phys. J. B, 58 (2007), 251.
  • [19] SORRELL C. C., NOWOTNY J., SUGIHARA S., Materials for Energy Conversion Devices, Woodhead Publishing Limited, England, 2005.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d93dcca-f31c-4916-9465-bc426c277a31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.