PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy sliding mode control based-fast finite-time projective synchronization for fractional-order chaotic systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explores the challenge of achieving a fast finite-time projective synchronization (FFTPS) in chaotic systems characterized by incommensurate fractional orders, unknown master-slave models, and uncertain external disturbances. Utilizing the principles of Lyapunov stability theory, two fuzzy sliding mode control (FSMC) schemes are proposed. Accordingly, two novel non-singular finite-time sliding surfaces are constructed. Fuzzy logic systems are utilized to provide an approximation of the continuous uncertain dynamics within the master-slave system. The sufficient conditions for both controllers are derived to ensure this robust FFTPS. Finally, the proposed controllers are validated through numerical simulations on two projective synchronization examples of fractional-order chaotic systems, demonstrating their feasibility.
Rocznik
Strony
473--500
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wzory
Twórcy
  • LAJ Laboratory, University of Jijel, BP. 98, Ouled-Aissa, 18000, Jijel, Algeria
  • LAJ Laboratory, University of Jijel, BP. 98, Ouled-Aissa, 18000, Jijel, Algeria
  • LAJ Laboratory, University of Jijel, BP. 98, Ouled-Aissa, 18000, Jijel, Algeria
Bibliografia
  • [1] L.M. Pecora and T.L. Carroll: Synchronization in chaotic systems. Physical Review Letters, 64(8), (1990), 821-824. DOI: 10.1103/PhysRevLett.64.821
  • [2] J. Jian, K. Wu and B. Wang: Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems. Physica A: Statistical Mechanics and its Applications, 540 (2020). DOI: 10.1016/j.physa.2019.123166
  • [3] S. Heidarzadeh, S. Shahmoradi and M. Shahrokhi: Adaptive synchronization of two different uncertain chaotic systems with unknown dead-zone input nonlinearities. Journal of Vibration and Control, 26(21-22), (2020), 1956-1968. DOI: 10.1177/1077546320909183
  • [4] A. Khan and U. Nigar: Sliding mode disturbance observer control based on adaptive hybrid projective compound combination synchronization in fractional-order chaotic systems. Journal of Control, Automation and Electrical Systems, 31(4), (2020), 885-899. DOI: 10.1007/s40313-020-00613-9
  • [5] M. Asadollahi, A.R. Ghiasi and M.A. Badamchizadeh: Adaptive synchronization of chaotic systems with hysteresis quantizer input. ISA Transactions, 98, (2020), 137-148. DOI: 10.1016/j.isatra.2019.08.043
  • [6] Y. Wang and D. Li: Adaptive synchronization of chaotic systems with time-varying delay via aperiodically intermittent control. Soft Computing, 24(17), (2020), 12773-12780. DOI: 10.1007/s00500-020-05161-7
  • [7] V.N. Giap, S.C. Huang, Q.D. Nguyen and T.J. Su: Disturbance observer-based linear matrix inequality for the synchronization of Takagi-Sugeno fuzzy chaotic systems. IEEE Access, 8, (2020), 225805-225821. DOI: 10.1109/ACCESS.2020.3045416
  • [8] X. Chen, H.P. Ju, J. Cao and J. Qiu: Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. Applied Mathematics and Computation, 308, (2017), 161-173. DOI: 10.1016/j.amc.2017.03.032
  • [9] A.S.T. Kammogne, V.F. Mawamba and J. Kengne: Robust prescribed time stabilization for fuzzy sliding mode synchronization for uncertain chaotic systems. European Journal of Control, 59, (2021), 29-37. DOI: 10.1016/j.ejcon.2021.01.007
  • [10] O. Mofid, M. Momeni, S. Mobayen and A. Fekih: A disturbance observer-based sliding mode control for the robust synchronization of uncertain delayed chaotic systems: Application to data security. IEEE Access, 9, (2021), 16546-16555. DOI: 10.1109/ACCESS.2021.3053014
  • [11] S. Mobayen, A. Fekih, S. Vaidyanathan and A. Sambas: Chameleon chaotic systems with quadratic nonlinearities: An adaptive finite-time sliding mode control approach and circuit simulation. IEEE Access, 9, (2021), 64558-64573. DOI: 10.1109/ACCESS.2021.3074518
  • [12] A. Sambas, A. Mohammadzadeh, S. Vaidyanathan, A.F.M. Ayob, A. Aziz, M.A. Mohamed, I.M. Sulaiman and M.A.A. Nawi: Investigation of chaotic behavior and adaptive type-2 fuzzy controller approach for permanent magnet synchronous generator (PMSG) wind turbine system. AIMS Mathematics, 8(3), (2023), 5670-5686. DOI: 10.3934/math.2023285
  • [13] A. Boulkroune, A. Bouzeriba, S. Hamel and T. Bouden: Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems. Complexity, 21(2), (2015), 180-192. DOI: 10.1002/cplx.21596
  • [14] A. Boulkroune, A. Bouzeriba, S. Hamel and T. Bouden: A projective synchronization scheme based on fuzzy adaptive control for unknown multivariable chaotic systems. Nonlinear Dynamics, 78 (2014), 433-447. DOI: 10.1007/s11071-014-1450-x
  • [15] S. Hamel, A. Boulkroune and A. Bouzeriba: Function vector synchronization based on fuzzy control for uncertain chaotic systems with dead-zone nonlinearities. Complexity, 21(S1), (2016), 234-249. DOI: 10.1002/cplx.21737
  • [16] Sukono, A. Sambas, S. He, H. Liu, S. Vaidyanathan, Y. Hidayat and J. Saputra: Dynamical analysis and adaptive fuzzy control for the fractional-order financial risk chaotic system. Advances in Difference Equations, 2020, (2020). DOI: 10.1186/s13662-020-03131-9
  • [17] X.J. Yang: Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Thermal Science, 21 (2017), 1161-1171. DOI: 10.2298/TSCI161216326Y
  • [18] X.J. Yang and J.A. Tenreiro Machado: A new fractional operator of variable order: application in the description of anomalous diffusion. Physica A: Statistical Mechanics and its Applications, 481 (2017), 276-283. DOI: 10.1016/j.physa.2017.04.054
  • [19] C. Rajivganthi, F.A. Rihan, S. Lakshmanan and P. Muthukumar: Finite-time stability analysis for fractional-order Cohen Grossberg BAM neural networks with time delays. Neural Computing and Applications, 29 (2018), 1309-1320. DOI: 10.1007/s00521-016-2641-9
  • [20] P. Mani, R. Rajan, L. Shanmugam and Y.H. Joo: Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Information Sciences, 491 (2019), 74-89. DOI: 10.1016/j.ins.2019.04.007
  • [21] B. Chen and J. Chen: Razumikhin-type stability theorems for functional fractional-order differential systems and applications. Applied Mathematics and Computation, 254 (2015), 63-69. DOI: 10.1016/j.amc.2014.12.010
  • [22] Q. Wang, J. Zhang, D. Ding and D. Qi: Adaptive Mittag-Leffler stabilization of a class of fractional order uncertain nonlinear systems. Asian Journal of Control, 18 (2016), 2343-2351. DOI: 10.1002/asjc.1296
  • [23] G. Fernandez-Anaya, G. Nava-Antonio, J. Jamous-Galante, R. Muñoz-Vega and E.G. Hernández-Martínez: Lyapunov functions for a class of nonlinear systems using Caputo derivative. Communications in Nonlinear Science and Numerical Simulation, 43 (2017), 91-99. DOI: 10.1016/j.cnsns.2016.06.031
  • [24] M.P. Aghababa: Synchronization and stabilization of fractional second-order nonlinear complex systems. Nonlinear Dynamics, 80(4), (2015), 1731-1744. DOI: 10.1007/s11071-014-1411-4
  • [25] A. Bouzeriba, A. Boulkroune and T. Bouden: Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. International Journal of Machine Learning and Cybernetics, 7 (2016), 893-908. DOI: 10.1007/s13042-015-0425-7
  • [26] A. Boubellouta, F. Zouari and A. Boulkroune: Intelligent fuzzy controller for chaos synchronization of uncertain fractional-order chaotic systems with input non-linearities. International Journal of General Systems, 48(3), (2019), 211-234. DOI: 10.1080/03081079.2019.1566231
  • [27] A. Boubellouta and A. Boulkroune: Intelligent fractional-order control-based projective synchronization for chaotic optical systems. Soft Computing, 23(14), (2019), 5367-5384. DOI: 10.1007/s00500-018-3490-5
  • [28] A. Boulkroune and S. Ladaci: Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems. IGI Global, 2019. DOI: 10.4018/978-1-5225-5418-9
  • [29] A.A.K. Javan and A. Zare: Images encryption based on robust multi-mode finite time synchronization of fractional-order hyper-chaotic Rikitake systems. Multimedia Tools and Applications, 83(1), (2024), 1103-1123. DOI: 10.1007/s11042-023-15783-2
  • [30] F. Du and J.G. Lu: Finite-time synchronization of fractional-order delayed fuzzy cellar neural networks with parameter uncertainties. IEEE Transactions on Fuzzy Systems, 31(6), (2023), 1769-1779. DOI: 10.1109/TFUZZ.2022.3214070
  • [31] H. Fu and Y. Kao: Synchronization of uncertain general fractional unified chaotic systems via finite-time adaptive sliding mode control. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(1), (2023), 043136. DOI: 10.1063/5.0130366
  • [32] X. Meng, Z., Wu, C. Gao, B. Jiang and H.R. Karimi: Finite-time projective synchronization control of variable-order fractional chaotic systems via sliding mode approach. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(7), (2021), 2503-2507. DOI: 10.1109/TCSII.2021.3055753
  • [33] Z. Rashidnejad and P. Karimaghaee: Synchronization of a class of uncertain chaotic systems utilizing a new finite-time fractional adaptive sliding mode control. Chaos, solitons and fractals: X, 5 (2020). DOI: 10.1016/j.csfx.2020.100042
  • [34] X. Wu, H. Bao, H. and J. Cao: Finite-time inter-layer projective synchronization of Caputo fractional-order two-layer networks by sliding mode control. Journal of the Franklin Institute, 358(1), (2021), 1002-1020. DOI: 10.1016/j.jfranklin.2020.10.043
  • [35] M. Dalir and N. Bigdeli: An adaptive neuro-fuzzy backstepping sliding mode controller for finite time stabilization of fractional-order uncertain chaotic systems with time-varying delays. International Journal of Machine Learning and Cybernetics, 12(7), (2021), 1949-1971. DOI: 10.1007/s13042-021-01286-9
  • [36] J. Xiao, L. Wu, A. Wu, Z. Zeng and Z. Zhang: Novel controller design for finite-time synchronization of fractional-order memristive neural networks. Neurocomputing, 512 (2022), 494-502. DOI: 10.1016/j.neucom.2022.09.118
  • [37] M. Dosti and M. Matinfar: Finite-time sliding mode control methods for a class of non-integer-order systems with input saturations and its application. Physica Scripta, 98(08), (2023). DOI: 10.1088/1402-4896/ace5f4
  • [38] M. Taheri, Y. Chen, C. Zhang, Z.R. Berardehi, M. Roohi and M.H. Khooban: A finite-time sliding mode control technique for synchronization chaotic fractional-order laser systems with application on encryption of color images. Optik, 285 (2023). DOI: 10.1016/j.ijleo.2023.170948
  • [39] Z. Zhan, X. Zhao and R. Yang: Recurrent neural networks with finite-time terminal sliding mode control for the fractional-order chaotic system with Gaussian noise. Indian Journal of Physics, 98(1), (2024), 291-300. DOI: 10.1007/s12648-023-02778-w
  • [40] Y.L. Wang, H. Jahanshahi, S. Bekiros, F. Bezzina, Y.M. Chu and A.A. Aly: Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence. Chaos, Solitons and Fractals, 146 (2021). DOI: 10.1016/j.chaos.2021.110881
  • [41] B. Mao: Two methods for terminal sliding-mode synchronization of fractional-order nonlinear chaotic systems. Asian Journal of Control, 23(4), (2021), 1720-1727. DOI: 10.1002/asjc.2328
  • [42] A. Hamoudi, N. Djeghali and M. Bettayeb: High-order sliding mode-based synchronization of fractional-order chaotic systems subject to output delay and unknown disturbance. International Journal of Systems Science, 53(14), (2022), 2876-2900. DOI: 10.1080/00207721.2022.2063965
  • [43] K. Mathiyalagan and G. Sangeetha: Second-order sliding mode control for nonlinear fractional-order systems. Applied Mathematics and Computation, 383 (2020). DOI: 10.1016/j.amc.2020.125264
  • [44] U.M. Al-Saggaf, M. Bettayeb and S. Djennoune: Super-twisting algorithm-based sliding-mode observer for synchronization of nonlinear incommensurate fractional-order chaotic systems subject to unknown inputs. Arabian Journal for Science and Engineering, 42 (2017), 3065-3075. DOI: 10.1007/s13369-017-2548-5
  • [45] F.W. Alsaade, M.S. Al-zahrani, Q. Yao and H. Jahanshahi: A model-free finite-time control technique for synchronization of variable-order fractional Hopfield-like neural network. Fractal and Fractional, 7(5), (2023). DOI: 10.3390/fractalfract7050349
  • [46] A. Razzaghian, R. Kardehi Moghaddam and N. Pariz: Adaptive fuzzy fractional-order fast terminal sliding mode control for a class of uncertain nonlinear systems. International Journal of Industrial Electronics Control and Optimization, 5(1), (2022), 77-87. DOI: 10.22111/ieco.2022.38930.1364
  • [47] S. Lu, X. Wang and Y. Li: Adaptive neural network finite-time command filtered tracking control of fractional-order permanent magnet synchronous motor with in-put saturation. Journal of the Franklin Institute, 357(18), (2020), 13707-13733. DOI: 10.1016/j.jfranklin.2020.10.021
  • [48] K. Shao, Z. Xu and T. Wang: Robust finite-time sliding mode synchronization of fractional-order hyper-chaotic systems based on adaptive neural network and disturbances observer. International Journal of Dynamics and Control, 9 (2021), 541-549. DOI: 10.1007/s40435-020-00657-4
  • [49] X. Song, S. Song, L. Liu and B. Inés Tejado: Adaptive interval type-2 fuzzy sliding mode control for fractional-order systems based on finite-time scheme. Journal of Intelligent and Fuzzy Systems, 32(3), (2017), 1903-1915. DOI: 10.3233/JIFS-161284
  • [50] M.P. Aghababa: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 69(1-2), (2012), 247-261. DOI: 10.1007/s11071-011-0261-6
  • [51] I. Podlubny: Fractional Differential Equations. Academic Press, 1999.
  • [52] Z. Ruo-Xun and Y. Shi-Ping: Adaptive stabilization of an incommensurate fractional order chaotic system via a single state controller. Chinese Physics B, 20(11), (2011). DOI: 10.1088/1674-1056/20/11/110506
  • [53] D.F. Wang, J.Y. Zhang and X.Y. Wang: Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller. Chinese Physics B, 20(11), (2011). DOI: 10.1088/1674-1056/22/4/040507
  • [54] R. Zhang and S. Yang: Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations. Nonlinear Dynamics, 69(3), (2012), 983-992. DOI: 10.1007/s11071-011-0320-z
  • [55] Z.Y. Sun, Y.Y. Dong and C.C. Chen: Global fast finite-time partial state feedback stabilization of high-order nonlinear systems with dynamic uncertainties. Information Sciences, 484 (2019), 219-236. DOI: 10.1016/j.ins.2019.01.077
  • [56] S. Yu, X. Yu, B.-J. Shirinzadeh and Z. Man: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 41(11), (2005), 1957-1964. DOI: 10.1016/j.automatica.2005.07.001
  • [57] L.X. Wang: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, 1994.
  • [58] S. Bhalekar: Synchronization of incommensurate non-identical fractional order chaotic systems using active control. The European Physical Journal Special Topics, 223(8), (2014), 1495-1508. DOI: 10.1140/epjst/e2014-02184-0
  • [59] A. Boulkroune, M. Tadjine M. M’Saad and M. Farza: How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems. Fuzzy sets and systems, 159(8), (2008), 926-948. DOI: 10.1016/j.fss.2007.08.015
  • [60] X.J. Wu and S.L. Shen: Chaos in the fractional-order Lorenz system. International Journal of Computer Mathematics, 86(7), (2009), 1274-1282. DOI: 10.1080/00207160701864426
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d8be962-cec7-4ed3-aa87-4ebc9909f7e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.