Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The steady-state visually evoked potential (SSVEP) based brain-computer interfaces (BCIs) generally deploy flickering stimuli with different frequencies in order to generate different commands. This paper presents a setup that can be used to generate multiple commands from a single flickering stimulus using magnitude modulation of SSVEP through eye-accommodation. In this setup, a flickering stimulus was shown on the computer screen and a passive fixation target was placed between the screen and the subject. The eye-accommodation mechanism to focus on the target between the screen and the subject, caused the flickering stimulus to become blurred which reduced the magnitude of the evoked SSVEP response. The reduced magnitude SSVEP response can be used to generate another command over the command generated when the subject focuses directly on the stimulus. The fixation target was placed at 3 different positions that can provide up to 4 commands from the single flicker stimulus. Fifteen healthy human subjects participated in the experiments. The mean offline accuracies obtained for 2-class, 3-class, and 4-class extraction were 100%, 94.2 ± 6.1%, and 80.9 ± 9.7% respectively for a 4-seconds time window.
Wydawca
Czasopismo
Rocznik
Tom
Strony
914--922
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- New DRHR Building, Bhabha Atomic Research Centre, Mumbai 400085, India
autor
- Homi Bhabha National Institute, India
Bibliografia
- [1] Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol 2002;113:767–91. http://dx.doi.org/10.1016/S1388-2457(02)00057-3.
- [2] Cipresso P, Carelli L, Faini A, Riva G, Solca F, Poletti B, et al. Brain-computer interface for clinical purposes: cognitive assessment and rehabilitation. Biomed Res Int 2017;2017:1–11. http://dx.doi.org/10.1155/2017/1695290.
- [3] Lupu RG, Irimia DC, Ungureanu F, Poboroniuc MS, Moldoveanu A. BCI and FES based therapy for stroke rehabilitation using VR facilities. Wirel Commun Mob Comput 2018;2018:1–8. http://dx.doi.org/10.1155/2018/4798359.
- [4] Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 2006;31:153–9. ttp://dx.doi.org/10.1016/j.neuroimage.2005.12.003.
- [5] Fazel-Rezai R, Allison BZ, Guger C, Sellers EW, Kleih SC, Kübler A. P300 brain computer interface: current challenges and emerging trends. Front Neuroeng 2012;5:1–14. http://dx.doi.org/10.3389/fneng.2012.00014.
- [6] Ming Cheng, Xiaorong Gao, Shangkai Gao, Dingfeng Xu. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 2002;49:1181–6. http://dx.doi.org/10.1109/tbme.2002.803536.
- [7] Müller-Putz GR, Scherer R, Brauneis C, Pfurtscheller G. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng 2005;2:123–30. http://dx.doi.org/10.1088/1741-2560/2/4/008.
- [8] Chen X, Zhao B, Wang Y, Xu S, Gao X. Control of a 7-DOF robotic arm system with an SSVEP-Based BCI. Int J Neural Syst 2018;281850018. http://dx.doi.org/10.1142/s0129065718500181.
- [9] Cecotti H. A self-paced and calibration-less SSVEP-based brain-computer interface speller. IEEE Trans Neural Syst Rehabil Eng 2010;18:127–33. http://dx.doi.org/10.1109/TNSRE.2009.2039594.
- [10] Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans Neural Syst Rehabil Eng 2005;13(2):172–8. http://dx.doi.org/10.1109/TNSRE.2005.847369.
- [11] Allison BZ, Mcfarland DJ, Schalk G, Dong S, Jackson M, Wolpaw JR. Towards an independent brain - computer interface using SSVEP. Clin Neurophysiol 2009;119:399–408.
- [12] Zhang D, Maye A, Gao X, Hong B, Engel AK, Gao S. An independent brain-computer interface using covert non-spatial visual selective attention. J Neural Eng 2010;7. http://dx.doi.org/10.1088/1741-2560/7/1/016010.
- [13] Lesenfants D, Habbal D, Lugo Z, Lebeau M, Horki P, Amico E, et al. An independent SSVEP-based brain-computer interface in locked-in syndrome. J Neural Eng 2014;11. http://dx.doi.org/10.1088/1741-2560/11/3/035002.
- [14] Punsawad Y, Wongsawat Y. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation. Med Biol Eng Comput 2017;55:965–77. http://dx.doi.org/10.1007/s11517-016-1560-3.
- [15] Maye A, Zhang D, Engel AK. Utilizing retinotopic mapping for a multi-target SSVEP BCI with a single flicker frequency. IEEE Trans Neural Syst Rehabil Eng 2017;25:1026–36. http://dx.doi.org/10.1109/TNSRE.2017.2666479.
- [16] Chen J, Zhang D, Engel AK, Gong Q, Maye A. Application of a single-flicker online SSVEP BCI for spatial navigation. PLoS One 2017;12:1–13. http://dx.doi.org/10.1371/journal.pone.0178385.
- [17] Lim H, Ku J. Multiple-command single-frequency SSVEP-based BCI system using flickering action video. J Neurosci Methods 2019;314:21–7. http://dx.doi.org/10.1016/j.jneumeth.2019.01.005.
- [18] Chen X, Wang Y, Zhang S, Gao S, Hu Y, Gao X. A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies. J Neural Eng 2017;14(2):026013. http://dx.doi.org/10.1088/1741-2552/aa5989.
- [19] Chen X, Chen Z, Gao S, Gao X. Brain-computer interface based on intermodulation frequency. J Neural Eng 2013;10. http://dx.doi.org/10.1088/1741-2560/10/6/066009.
- [20] Zheng W, Vialatte F, Adibpour P, Chen C. Effect of stimulus size and shape on steady-state visually evoked potentials for brain-computer interface optimization. Proceedings of the 5th International Joint Conference on Computational Intelligence (IJCCI) 2013;574–7. http://dx.doi.org/10.5220/0004667705740577.
- [21] Godinez Tello RJM, Müller SMT, Ferreira A, Bastos TF. Comparison of the influence of stimuli color on steady-state visual evoked potentials. Rev Bras Eng Biomed 2015;31:218–31. http://dx.doi.org/10.1590/2446-4740.0739.
- [22] Autthasan P, Du X, Perera M, Lamyai S, Itthipuripat S, Yagi T, et al. Towards an integrated approach to simultaneously estimating the frequency and amplitude modulations of SSVEP signals from consumer-grade EEG. arXiv preprint arXiv:1809.07356v2; 2019, Aug 7.
- [23] Cotrina A, Benevides AB, Castillo-Garcia J, Ferreira A, Bastos Filho TF. Statistical evaluation of a novel SSVEP-BCI stimulation setup based on depth-of-field. Rev Bras Eng Biomed 2015;31:295–306. http://dx.doi.org/10.1590/2446-4740.0752.
- [24] Cotrina A, Benevides AB, Castillo-Garcia J, Benevides AB, Rojas-Vigo D, Ferreira A, et al. A SSVEP-BCI setup based on depth-of-Field. IEEE Trans Neural Syst Rehabil Eng 2017;25:1047–57. http://dx.doi.org/10.1109/TNSRE.2017.2673242.
- [25] COPENHAVER RM, PERRY NW. Factors affecting visually evoked cortical potentials such As impaired vision of varying etiology. Invest Ophthalmol 1964;3:665–75.
- [26] Ebenholtz SM. Oculomotor systems and perception. Cambridge: Cambridge University Press; 2001. http://dx.doi.org/10.1017/CBO9780511529795.
- [27] Dewan EM. Occipital alpha rhythm eye position and lens accommodation. Nature 1967. http://dx.doi.org/10.1038/214975a0.
- [28] Eason RG, Sadler R. Relationship between voluntary control of alpha activity level through auditory feedback and degree of eye convergence. Bull Psychon Soc 1977;9:21–4. http://dx.doi.org/10.3758/BF03336917.
- [29] Pastor MA, Artieda J, Arbizu J, Valencia M, Masdeu JC. Human cerebral activation during steady-state visual-evoked responses. J Neurosci 2003;23:11621–7.
- [30] Bin G, Gao X, Yan Z, Hong B, Gao S. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng 2009;6:6–11. http://dx.doi.org/10.1088/1741-2560/6/4/046002.
- [31] Kian BN, Andrew PB, Ross C. Stimulus specificity of a steady-state visual-evoked potential-based brain–computer interface. J Neural Eng 2012;9:36008.
- [32] Wang Yijun, Zhang Zhiguang, Gao Xiaorong, Gao Shangkai. Lead selection for SSVEP-based brain-computer interface; 2005;4507–10. http://dx.doi.org/10.1109/iembs.2004.1404252.
- [33] Schlögl A, Lee F, Bischof H, Pfurtscheller G. Characterization of four-class motor imagery EEG data for the BCIcompetition. J Neural Eng 2005;2(4):L14. http://dx.doi.org/10.1088/1741-2560/2/4/L02.
- [34] Zhang Z, Wang C, Ang KK, Wai AAP, Nanyang CG. Spectrum and phase adaptive CCA for SSVEP-based brain computer interface. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS; 2018. pp. 311–4. http://dx.doi.org/10.1109/EMBC.2018.8512267.
- [35] Sengelmann Malte, Engel Andreas K, Maye Alexander. Maximizing information transfer in SSVEP-Based brain- computer interfaces. IEEE Trans Biomed Eng 2017;64:381–94. http://dx.doi.org/10.1109/TBME.2016.2559527.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d893e36-eff9-4f49-892b-2edaffc1f06a