PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of cyber-attacks in air transport using neural networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article addresses the topic of cyber-attacks in air transport, which is crucial for ensuring the safety and reliability of airports and air transport operations. The aim of the article was to present a new method for predicting cyber-attacks in air transport based on neural networks. The task of the neural network was to determine the multiple regression function based on which the probability of a cyberattack occurring at a specified hour and on a specific day of the week is predicted. The probability, depending on the time of the cyberattack occurrence, was determined using theoretical distributions. The method was verified with real data. Verification of the method confirmed its high effectiveness, determined at the level of 92%. The study examined the effectiveness of using the classical multiple regression method in predicting cyber-attacks in air transport. The classical multiple regression model covered only 0.14 of the input data, while the regression model generated by the neural network covered 0.99, indicating the high efficiency of the developed neural network.
Słowa kluczowe
Rocznik
Strony
art. no. 191476
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Bibliografia
  • 1. Alansari Z, Soomro S, Belgaum MR. Smart Airports: Review and Open Research Issues. In: Miraz, M., Excell, P., Ware, A., Soomro, S., Ali, M. (eds) Emerging Technologies in Computing. iCETiC 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-23943-5_10.
  • 2. Alomar I, Yatskiv I. Digitalization in aircraft maintenance processes. Aviation 2023; 27(2): 86-94, https://doi.org/10.3846/aviation.2023.18923.
  • 3. Basora L, Olive X, Dubot T. Recent Advances in Anomaly Detection Methods Applied to Aviation. Aerospace 2019; 6(11): 117, https://doi.org/10.3390/aerospace6110117.
  • 4. Bauranov A, Rakas J. Bayesian network model of aviation safety: Impact of new communication technologies on mid-air collisions. Reliability Engineering & System Safety 2024; 243: 109905, https://doi.org/10.1016/j.ress.2023.109905.
  • 5. Cai K, Li Y, Fang YP, Zhu Y. A Deep Learning Approach for Flight Delay Prediction Through Time-Evolving Graphs. IEEE Transactions on Intelligent Transportation Systems 2022; 23(8): 11397-11407, https://doi.org/10.1109/TITS.2021.3103502.
  • 6. Cano J, Pollini A, Falciani L, Turhan U. Modeling current and emerging threats in the airport domain through adversarial risk analysis. J Risk Res. 2016; 19(7): 894-912, https://doi.org/10.1080/13669877.2015.1057201.
  • 7. Center for Strategic and International Studies (CSIS). Significant Cyber Incidents Since 2006 [Internet]. https://csis-website-prod.s3.amazonaws.com/s3fs-public/202406/240607_Significant_Cyber_Events.pdf?VersionId=E3Y46OOqM9GsO4KNWizmvg7aA2NYZ2a6.
  • 8. Chevrot A, Vernotte A, Legeard B. CEA: Contextual auto-encoder for multivariate time-series anomaly detection in air transportation. Computers & Security 2022; 116: 102652, https://doi.org/10.1016/j.cose.2022.102652.
  • 9. Dangut MD, Jennions IK, King S, Skaf Z. Application of deep reinforcement learning for extremely rare failure prediction in aircraft maintenance. Mechanical Systems and Signal Processing 2022; 171: 108873, https://doi.org/10.1016/j.ymssp.2022.108873.
  • 10. Fakeeh KA. An Analysis of Airports Cyber-Security. Communications on Applied Electronics 2016; 4(7): 11-15, https://doi.org/10.5120/cae2016652129.
  • 11. Future of Aviation. ICAO [Internet], https://www.icao.int/Meetings/FutureOfAviation/Pages/default.aspx.
  • 12. Gaurav D, Gaurav Choudhary V, Sihag IY, Kim-Kwang RC. Cyber security challenges in aviation communication, navigation, and surveillance. Computers & Security 2022; 112: 102516, https://doi.org/10.1016/j.cose.2021.102516.
  • 13. Gençoğlu MT. Mathematical Modeling of Cyber Attack and Defense. Bilgisayar Bilimleri ve Teknolojileri Dergisi 2022; 3(1): 10-16, https://doi.org/10.54047/bibted.997908.
  • 14. Gołda P, Zawisza T, Izdebski M. Evaluation of efficiency and reliability of airport processes using simulation tools. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (4): 659–669, http://doi.org/10.17531/ein.2021.4.8.
  • 15. Izdebski M, Jacyna M, Bogdański J. Minimisation of the Energy Expenditure of Electric Vehicles in Municipal Service Companies, Taking into Account the Uncertainty of Charging Point Operation. Energies 2024; 17(9): 2179, https://doi.org/10.3390/en17092179.
  • 16. Izdebski M, Jacyna-Gołda I, Gołda P. Minimisation of the probability of serious road accidents in the transport of dangerous goods. Reliability Engineering & System Safety 2022; 217: 108093, https://doi.org/10.1016/j.ress.2021.108093.
  • 17. Izdebski, M. Risk management in the allocation of vehicles to tasks in transport companies using a heuristic algorithm. Archives of Transport 2023; 67(3): 139-153. https://doi.org/10.5604/01.3001.0053.7463.
  • 18. Jamal M, Ashraf H, Jhanjhi N. Machine Learning-based Aircraft Conflict Prediction: A Systematic Literature Review. Preprints 2023; 2023121600, https://doi.org/10.20944/preprints202312.1600.v1.
  • 19. Jana DK, Ghosh R. Novel interval type-2 fuzzy logic controller for improving risk assessment model of cyber security, Journal of Information Security and Applications 2018; 40: 173-182, https://doi.org/10.1016/j.jisa.2018.04.002.
  • 20. Jang-Jaccard J, Nepal S. A survey of emerging threats in cybersecurity. Journal of Computer and System Sciences 2014; 80(5): 973-993, https://doi.org/10.1016/j.jcss.2014.02.005.
  • 21. Karpiuk M, Kelemen M. Cybersecurity in civil aviation in Poland and Slovakia. Cybersecurity Law. 2022; 8(2): 70-83, https://doi.org/10.35467/cal/157125.
  • 22. Koch T, Moller DPF, Deutschmann A, Milbredt O. Model-based airport security analysis in case of blackouts or cyber-attacks. IEEE International Conference on Electro Information Technology (EIT) 2017; Lincoln, NE, USA 14-17 May 2017, 2154-0373, https://doi.org/10.1109/EIT.2017.8053346.
  • 23. Koroniotis N, Moustafa N, Schiliro F, Gauravaram P, Janicke H. A Holistic Review of Cybersecurity and Reliability Perspectives in Smart Airports. IEEE Access. 2020; 8:209802-209834, https://doi.org/10.1109/ACCESS.2020.3036728.
  • 24. Koroniotis N, Moustafa N, Schiliro F, Gauravaram P, Janicke H. A Holistic Review of Cybersecurity and Reliability Perspectives in Smart Airports. IEEE Access 2020; 8: 209802-209834, https://doi.org/10.1109/ACCESS.2020.3036728.
  • 25. Kozłowski E, Borucka A, Oleszczuk P, Jałowiec T, Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors, Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023: 25(4), http://doi.org/10.17531/ein/172857
  • 26. Kuznietsova T, Chyrkov A. Angstromtechnology of aviation cybersecurity. Ukrainian Scientific Journal of Information Security 2020; 26(1): 28-34. https://doi.org/10.18372/2225-5036.26.14667.
  • 27. Majeed K, Masood Z, Ghori MR, Raja MAZ. Design and analysis of cyber warfare model with intelligent predictive stochastic networks for attack–defend strategies on critical infrastructures. Appl Soft Comput. 2023; 148: 110847, https://doi.org/10.1016/j.asoc.2023.110847.
  • 28. Malhotra O, Dey S, Foo E, Helbig M. Cyber Security Maturity Model Capability at The Airports. ACIS 2021; 55.
  • 29. Meyer S. Airline Data Breaches Worrying - CPO Magazine 2018, https://www.cpomagazine.com/cyber-security/airline-data-breaches-worrying/.
  • 30. Nassar A, Kamal M. Machine Learning and Big Data Analytics for Cybersecurity Threat Detection: A Holistic Review of Techniques and Case Studies. Journal of Artificial Intelligence and Machine Learning in Management 2021; 5(1): 51-63. https://doi.org/10.1007/978-3-030-57024-8.
  • 31. Ray G, Ray J. Detecting ADS-B replay cyber-attacks in the national airspace system. Issues in Information Systems 2023; 24(1): 170-185, https://doi.org/10.48009/1_iis_2023_115.
  • 32. Roy S, Tamimi A, Hahn A, Xue M, Das S, Vosughi A, Varnick S. A Modeling Framework for Assessing Cyber Disruptions and Attacks to the National Airspace System. AIAA Modeling and Simulation Technologies Conference. Kissimmee, Florida: American Institute of Aeronautics and Astronautics 2018, https://doi.org/10.2514/6.2018-0109.
  • 33. Sobchuk V, Barabash O, Musienko A, Tsyganivska I, Kurylko O. Mathematical Model of Cyber Risks Management Based on the Expansion of Piecewise Continuous Analytical Approximation Functions of Cyber-attacks in the Fourier Series. Axioms 2023; 12(10): 924, https://doi.org/10.3390/axioms12100924.
  • 34. Ukwandu E, Ben-Farah MA, Hindy H, Bures M, Atkinson R, Tachtatzis C, Andonovic I, Bellekens X. Cyber-Security Challenges in Aviation Industry: A Review of Current and Future Trends. Information 2022; 13(3): 146, https://doi.org/10.3390/info13030146.
  • 35. Wåhlén M, Fahlström P, Näslund A. Threat Intelligence Report 2024 [Internet]. Truesec; Report No.: 1, https://insights.truesec.com/hub/report/truesec-threat-intelligence-report-2024.
  • 36. Zalewski J, Kornecki A. Trends and challenges in the aviation systems safety and cybersecurity. TASK Q. 2019; 23(2):159-175, https://doi.org/10.17466/tq2019/23.2/a
  • 37. Zhang J, Pan L, Han QL, Chen C, Wen S, and Y. Xiang Y. Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey. IEEE/CAA Journal of Automatica Sinica 2022; 9(3): 377-391, https://doi.org/10.1109/JAS.2021.1004261.
  • 38. Zhang X, Mahadevan S. Ensemble machine learning models for aviation incident risk prediction. Decision Support Systems 2019; 116: 48-63, https://doi.org/10.1016/j.dss.2018.10.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d881816-9dd1-40b0-b960-264c05c8d123
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.