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Abstract 

In this paper, we employ the projection-based interpolation algorithm for approximation of two-dimensional bitmaps 

resulting from photographs of multi-phase material samples. The algorithm uses h-adaptive two-dimensional finite ele-

ment grid with triangular elements. It results in a continuous approximation of material data with Lagrange polynomial, 

which makes them more suitable for finite element method computations. 
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1. INTRODUCTION 

The projection-based interpolation was invented 

by (Demkowicz, 2004), to implement efficient hp-

adaptive finite element method computations, as 

described in (Demkowicz, 2006a). The mathematical 

properties of the method, including the convergence 

properties, are analyzed in (Demkowicz & Buffa 

2004) and (Demkowicz, 2006b). The method was 

used in (Gurgul et al., 2013) for continuous approx-

imation of material data using two-dimensional h-

adaptive finite element method with rectangular 

elements. The agent-based parallel implementation 

was also proposed in (Sieniek et al., 2011). The 

method was extended to three-dimensional grids 

with hexahedral finite elements in (Goik et al., 

2013).  

We claim that the triangular meshes are more 

popular in engineering simulations, and thus we 

want to show that the PBI method works well with 

these non-regular grids as well.  

In this paper, we propose the version of the 

method using two-dimensional triangular finite ele-

ments. For a non-regular structure of the material 

data bitmaps, that do not conform with horizontal 

and vertical lines, we expect to obtain better approx-

imation properties of our method. 

We assume that we want to compute the dis-

placements, and thus the solution of the entire prob-

lem is needed. In the case when we are computing 

the strength, it is possible to apply the Saint-Venant 

principle, and the algorithm described in this paper 

may be not applicable. 

It is possible to extend the code with hp adaptiv-

ity, but this is technically more complicated. In gen-

eral h adaptation works well while recovering the 

large gradients, and p adaptation work well when we 

deal with smooth solutions. We compromise by 

using h adaptation with p = 2. We do not think that 

p-adaptation is suitable here since we are not ap-

proximating a smooth solution rather we are trying 

to adapt to jumps in material data.  
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2. PROJECTION-BASED INTERPOLATION 

WITH H-ADAPTIVE FINITE ELEMENT 

METHOD 

We employ the following adaptive algorithm 

(algorithm 1) executed on two-dimensional initial 

grid constructed with triangular finite elements. The 

input to the algorithm is a uniform grid as well as the 

bitmap representing the material data. 

How is the problem "solved" over the computa-

tional mesh? The projection solver performs the 

operations in algorithm 2. 

 

function hadaptive_PBI(initial_mesh,desired_err,coef,BITMAP) 

1 mesh = initial_mesh 

2 repeat 

3  u = solve on mesh using PBI (u=PBI_solver(mesh, BITMAP)) 

4  max_err = 0 

5  for each element K of coarse mesh do 

6   K_err = compute relative error on K  

7          using the mesh solution and BITMAP data 

8   if K_err > max_err then 

9    max_err = K_err 

10   end if 

11  end do 

12  adapted_mesh = new empty_mesh 

13  for each element K of mesh do 

14   if K_err > coef * max_err then 

15    break element K 

16   else 

17    add K from mesh to adapted_mesh 

18   end if 

19  end do 

20  mesh = adapted_mesh 

21  until max_err < desired_err 

22 return (u, mesh) 

Algorithm 1. h-adaptive finite element method on two-dimensional grid with triangular elements. 

function PBI_solver (mesh, BITMAP) 

1 loop through all mesh vertices iv  

2  //compute the PBI coefficient at vertex  iv  

3  𝑎𝑣𝑖
= 𝐵𝐼𝑇𝑀𝐴𝑃(𝑣𝑖) 

4 end loop 

5 loop through all mesh edge nodes  ie  

6  //compute the PBI coefficient at edge ie  

7  𝑎𝑒𝑖
=

∫ 𝑈(𝑥,𝑦)𝜑𝑒𝑖
(x,y)𝑑𝑥𝑑𝑦

𝑒𝑖

∫ 𝜑𝑒𝑖
(x,y)𝜑𝑒𝑖

(x,y)𝑑𝑥𝑑𝑦
𝑒𝑖

  

8 end loop 

9 loop through all mesh interior nodes 𝐼 

10 //compute the PBI coefficient at interior 𝐼 

11 𝑎𝐼 =
∫ 𝑊(x,y)𝜑𝐼(x,y)𝑑𝑥𝑑𝑦𝐼

∫ 𝜑𝐼(x,y)𝜑𝐼(x,y)𝑑𝑥𝐼 dy
  

12 end loop 

13 return (u) 

Algorithm 2. Projection-based interpolation solver called from line 3 of Algorithm 1. 



 INFORMATYKA W TECHNOLOGII MATERIAŁÓW 

 – 31 – 

C
O

M
P

U
T

E
R

 M
E

T
H

O
D

S
 I

N
 M

A
T

E
R

IA
L

S
 S

C
IE

N
C

E
 

 

The quadratic polynomials are used, thus we 

have one degree of freedom per vertex, one degree 

of freedom per edge, and one degree of freedom per 

element interior. From the point of view of a single 

triangular element, the algorithm computes the coef-

ficients at all three vertices of the triangular element 

just by reading them from the bitmap: 

  1,...,3iv i ia BITMAP v    (1) 

Next, it minimizes the error in the L2 norm over 

three edges of the triangle The values read from 

BITMAP(vi) corresponds to pixels as presented in 

figure 1. They are within [0,1] where the values 

close to 0 represent one phase of the material, and 

the values close to 1 represent the second phase of 

the material. They are mapped into the Young 

modulus in a way that one phase maps to 15 GPa 

and another phase maps to 208 GPa: 

 

3 1,...,3

1
2

min

j i

i

i

V e

j
L e

U

BITMAT u u




 
 

  
 



 (2) 

 

We want to minimize distance from the space 

span by polynomial 
ieu  = aiei and the remaining 

approximant U. This is attained by considering  

U - 
ieu  orthogonal to the space span by 

ieu , which 

means that the scalar product in L2 norm is 0 there, 

which literally means: 

   

   

,
i

i

i

i i

i

e

e

e

e e

e

U x y dxdy

a
dxdy



 






x,y

x,y x,y
 (3) 

since the only basis function in the space span by 

polynomial 
ieu  is ei. 

Next, it minimizes the error in the L2 norm over 

the interior of the triangle: 

 

3 3

0,

1 1
2

min

j j

i

V e

j j
L f

W

U u u u
 


 

   
 

  I

 (4) 

We want to minimize the distance from the 

space span by polynomial uI = aieI and the remaining 

approximant W. This is attained by considering 

IeuW   orthogonal to the space span by ,
Ieu  which 

means that the scalar product in L2 norm is 0 there, 

which means: 

   

   

I

I
I

I I

I

W dxdy

a
dxdy



 





x,y x,y

x,y x,y

 (5) 

since the only basis function in the space span by 

polynomial 
Ieu  is eI. 

 

Fig. 1. The original bitmap with photo of the two-phase 
material. 

 

Fig. 2. The continuous approximation of the bitmap. 

3. NUMERICAL RESULTS 

We conclude the paper with numerical results 

presenting the generation of the continuous approx-

imation of the material data representing the two-

phase material.  

The size of the input mesh is arbitrary, the 

smaller the better, but we need to be able to catch 

the material irregularities at the Gauss integration 

points, so either initial mesh is large enough, or 
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while computing the numerical error over an ele-

ment we can perform the adaptive integration to 

catch all the irregularities of the bitmap. 

We have performed now the linear elasticity 

simulations of the compressed material. We consider 

the two-phase material with graphite inclusions un-

der the compressing force.  

The properties of the graphite are E = 15 GPa  

Young modulus and   = 0.3 Poisson ratio. The 

properties of the background material are   E = 208 

GPa Young modulus and   = 0.3 Poisson ratio, 

which represent the steel. 

We refer to Appendix A for the derivation of the 

linear elasticity equations. We solve the linear elas-

ticity problem over the continuous approximation of 

material data using the modified hp2d code (Dem-

kowicz, 2006a). The modifications are listed in Ap-

pendix B. 

We put the compressing force at the top and the 

bottom of the domain, and the free boundary condi-

tions on left and right sides, see figure 4. 

 

 

Fig. 3. The fragment of the computational mesh with adaptivities resulting from application of algorithm 1. 

 

Fig. 4. The continuous approximation of the bitmap. 

In our formulation we use displacements, and we 

model the compression by the following trick. We 

fix the displacements at the top and at the bottom of 

the domain, and we define the displacements as (0,-

1) at the top of the boundary, and (0,1) at the bottom 

of the boundary. Thus, we do not model the force 

itself, but rather the displacement of the material on 

the boundary of the domain, following from the 

compression force. From mathematical point of 

view, the formulation is stable and well-possed. The 

problem is elliptic, and on the part of the boundary 

we have Dirichlet boundary conditions. 

We utilize the compressing force: 

 

 

   
 

0, 1

: 0,0 \

0,1

i

top

i D i top bottom

bottom

for x

g x g x for x

for x

  


      




 (6) 

and zero initial stress
0

ij  = 0. 
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The elliptic computational problem, such as the 

linear elasticity, where some part of the boundary 

included the Dirichlet boundary conditions for all 

the components of the solution derive a unique solu-

tion. Here we fix the displacements on the top and 

bottom of the domain, as expressed by the formula 

for function gi from (7) the Dirichlet b.c. as de-

scribed in Appendix. In other words, the function gi 

is the Dirichlet boundary condition. 

We processed the piece of the material as pre-

sented in figure 5. Young modulus map in the mate-

rial is presented in figure 6. The resulting displace-

ment fields are presented in figures 7 and 8. 

 

Fig. 5. A Piece of the bitmap used for the compression 
simulations. 

 

Fig. 6. Young modulus map in the material. 

 

Fig. 7. Displacement in the x direction. 

Fig. 8. Displacement in the y direction. 

4. CONCLUSIONS 

The adaptive bitmap compressions with projec-

tion-based interpolation algorithm on triangular 

grids results in the continuous approximation of 

material data suitable for finite element method 

computations. We have shown in this paper that the 

material science data can be successfully approx-

imated with PBI using triangular mesh and subject 

to finite element method linear elasticity simula-

tions. The continuous approximation of material data 

removes singularities on the border of materials. 

When there are jumps in material coefficients, it 

is possible to apply the finite element method with-

out continuous approximation of material data ob-

tained by computing some projections, e.g., projec-

tion-based approximation as proposed in this paper. 

However, to converge to the high accuracy of the 

numerical solution, we need to perform several ad-

aptations of the computational mesh, each time solv-

ing a computational problem (linear elasticity in our 

case). The computational cost of solution of a com-

putational problem in two dimensions is O((kN)3/2) 

where k is the number of equations (k = 2 in case of 

linear elasticity), and N is the number of basis func-

tions over the mesh. In three-dimensions (not con-

sidered in this paper) this cost grows higher to 

O((kN)2). In other words, the computational cost of 
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creating high accuracy adaptive grid based on adap-

tive solving of a linear elasticity problem requires a 

sequence of O((kN)3/2) cost solutions. On the other 

hand, the projection based algorithm employed in 

this paper generates a smooth approximation of ma-

terial data, by employing a similar adaptive process, 

with the linear computations cost O(N). We can even 

employ the adapted computational mesh generated 

by projection based interpolation algorithm in a line-

ar computational cost and solve the linear elasticity 

problem with the original distribution of coeffi-

cients, resulting in a similar accuracy than the one 

obtained from the more costly standard adaptive 

procedure.  

APPENDIX A 

We start with classical linear elasticity with ui 

displacement vector, ui,j displacement gradients, u(i,j) 

symmetric part of the displacement gradients u(i,j) = 

(ui,j + uj,i)/2 and u[i,j] skew-symmetric part of the 

displacement gradients u[i,j] = (ui,j - uj,i)/2. 

We have the property that  ui,j = u(i,j) + u[i,j].  

We also introduce fi body force per unit volume.  

We introduce ij  strain tensor, defined to be the 

symmetric part of the displacement gradients ij  = 

(ui,j - uj,i)/2,  as well as ij  stress tensor, defined in 

terms of the generalized Hooke’s law: ij = cijklkl, 

with cijkl elastic coefficients (known for a given ma-

terial). 

We derive first the strong form of the boundary-

value problem: 

Given fi: R,  gi: 
iD R,  hi: 

iN R, 

find  ui: R such that:  

, 0 inij j if     (7) 

in
ii i Du g   (8) 

in
iij j i Nn h    (9) 

where: ij = cijklkl. 

The weak form is derived in the following way: 

Multiply ij,j = 0 by wi  Vi  and integrate over    to 

get: 

, 0i ij jw d


   (10) 

We integrate by parts: 

, 0i j ij i ij jw d w n d 
 

      (11) 

We have the property wi,jij = w(i,j)ij since ij is 

symmetric tensor, thus: 

 ,
0ij i ij ji j

w d w n d 
 

      (12) 

We get the weak form of the boundary-value prob-

lem: 

Given fi: R,  gi: 
iD R,  hi: 

iN R, 

find  ui  Vi such that: 

( , )

1

for all

i

Ni

nd

i j ij i i i i N

i

i i

w d w f d w h d

w V


  

 
    
 
 



    (13) 

We use  ij = cijklkl to get: 

( , )

1
i

Ni

nd

i j ijkl kl i i i i N

i

w c d w f d w h d
  

 
    
 
 

    (14) 

We also use  ij = u(i,j) to get: 

 ( , ) ,
1

i

Ni

nd

i j ijkl i i i i Nk l
i

w c u d w f d w h d
  

 
    
 
 

    (15) 

Following Hughes (2000) we introduce the follow-

ing abstract notation: 

Given f, g, h find uV, such that: 

      for all  
Γ

a w,u w,f w,h w V  (16) 

   ( , ) ,i j ijkl k l
w c u d



 a w,u  (17) 

  i iw f d


 w,f  (18) 

 
1

i

Ni

nd

i i N

i

w h d


 

 
  
 
 

 w,h  (19) 

For the implementation purposes we notice that: 

     d


 
T

a w,u ε w Dε u  (20) 

since      uDεwε
T

jiijklji ucw ,),(  and we have de-

fined: 
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 
1,1

2,2

1,2 2,1

u

u

u u

 
 

  
  

ε u  

 
1,1

2,2

1,2 2,1

w

w

w w

 
 

  
  

ε w  

2 0

2 0

0 0

λ+ μ λ

D λ λ+ μ

μ

 
 


 
  

 

where 

    
,

1 1 2 2 1

νE E
λ= μ=

+ν ν +ν
 

and E - the Young modulus,  - the Poisson ratio. 

APPENDIX B 

In this appendix we describe the modificiations 

of the hp2d linear elasticity code. The Dirichlet and 

Naumann boundary conditions have been imple-

mented in the following routines: 

Getg – uniform Neumann b.c. 

Getmat – material data, in particular Young modulus 

and Poisson ratio 

Getf – the compressing force 

 

 

 

Source code of the moodification of the hp2d linear elasticity code. 

c-------------------------------------------------------------c 

c   routine name       - getmat 

c 

c-------------------------------------------------------------c 

c   computer           - machine independent 

c 

c   latest revision    - Jan 06 

c 

c   purpose            - routine specifies coefficients of the 

c                        differential equation to be solved 

c                        (material data) 

c 

c   arguments : 

c     in: 

c              Mdle    - element (middle node) number 

c              Xi      - master element coordinates of a point 

c              Xp      - physical coordinates of the point 

c     out: 

c              ZAcoef,Zbcoef,ZCcoef - operator coefficients  

c 

c   required  routines - 

c 

c-------------------------------------------------------------c 

      subroutine getmat(Mdle,Xi,Xp, ZAcoef,Zbcoef,ZCcoef) 

c 

      use data_structure2D 

c 

#include "syscom.blk" 
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c 

      dimension Xi(2),Xp(NDIMEN) 

      dimension ZAcoef(1:MAXEQNS,1:MAXEQNS,2,2), 

     .          Zbcoef(1:MAXEQNS,1:MAXEQNS,2), 

     .          ZCcoef(1:MAXEQNS,1:MAXEQNS) 

c 

c  ...elasticities 

      dimension  ee(2,2,2,2) 

c 

      double precision Xval,Xder(2) 

c 

      ZAcoef(1:MAXEQNS,1:MAXEQNS,1:2,1:2) = ZERO 

      ZBcoef(1:MAXEQNS,1:MAXEQNS,1:2) = ZERO 

      ZCcoef(1:MAXEQNS,1:MAXEQNS) = ZERO 

c 

      EYOUNG = 1.d0; RNI = 0.3d0 

      call get_bitmap(Xp,Xval,Xder) 

      if(Xval.lt.0.5d0)then 

        EYOUNG=INV_E1*1.d9 !graphite 

      else 

        EYOUNG=INV_E2*1.d9 !background 

      endif 

c 

      g  = EYOUNG/2.d0/(1.d0+RNI) 

      rl = EYOUNG*RNI/(1.d0+RNI)/(1.d0-2.d0*RNI) 

      aux = 2.d0*g+rl 

c 

c  ...define the tensor of elasticities, see Section 15.2 

c     in the book 

c 

c  ...E_ijkl = g(d_ik d_jl + d_il d_jk) + rl d_ij d_kl 

      ee(1:2,1:2,1:2,1:2) = 0.d0 

      ee(1,1,1,1) = aux; ee(2,2,2,2) = aux 

      ee(1,1,2,2) = rl;  ee(2,2,1,1) = rl 

      ee(1,2,1,2) = g;   ee(1,2,2,1) = g 

      ee(2,1,1,2) = g;   ee(2,1,2,1) = g 

c 

c  ...translate into the format for the PDE's coeeficients 

      do ivar2=1,2 

      do ivar1=1,2 

        do k=1,2 

        do l=1,2 

          ZAcoef(ivar2,ivar1,k,l) = ee(ivar2,k,ivar1,l) 

        enddo 

        enddo 
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      enddo 

      enddo 

c 

c      write(*,*)'getmat_elas: ZAcoef',ZAcoef 

c 

      return 

      end 

c-------------------------------------------------------------c 

c   routine name       - getf 

c 

c-------------------------------------------------------------c 

c   computer           - machine independent 

c 

c   latest revision    - Jan 06 

c 

c   purpose            - routine defines a rhs for the linear 

elasticity 

c                        problem 

c 

c   arguments : 

c     in: 

c              Xp      - physical coordinates of a point 

c     out: 

c              Zfval    - value of the rhs 

c 

c   required  routines - 

c 

c-------------------------------------------------------------c 

      subroutine getf(Mdle,Xi,Xp, Zfval) 

c 

      use data_structure2D 

      use control 

c 

#include "syscom.blk" 

c 

      dimension Xi(2),Xp(NDIMEN),Zfval(MAXEQNS) 

      dimension zacoef(1:MAXEQNS,1:MAXEQNS,2,2), 

     .          zbcoef(1:MAXEQNS,1:MAXEQNS,2), 

     .          zccoef(1:MAXEQNS,1:MAXEQNS) 

      dimension zval(MAXEQNS),zdval1(MAXEQNS,2),zdval2(MAXEQNS,2,2) 

      save nflag_getf 

      data nflag_getf /0/ 

      Zfval=0.d0 

      end 

c-------------------------------------------------------------c 



C
O

M
P

U
T

E
R

 M
E

T
H

O
D

S
 I

N
 M

A
T

E
R

IA
L

S
 S

C
IE

N
C

E
 

INFORMATYKA W TECHNOLOGII MATERIAŁÓW 

  – 38 – 

c   routine name       - dirichlet 

c 

c-------------------------------------------------------------c 

c   computer           - machine independent 

c 

c   latest revision    - Jan 06 

c 

c   purpose            - routine returns values and the first 

c                        order derivatives for the Dirichlet data 

c                        for the elastic plate example 

c 

c   arguments : 

c     in: 

c              Xp      - physical coordinates of a point 

c     out: 

c              Zval    - values of the Dirichlet data 

c              Zdval1  - values of the first order derivatives 

c 

c-------------------------------------------------------------c 

      subroutine dirichlet(Xp, Zval,Zdval1) 

c 

      use data_structure2D 

      use control 

c 

#include "syscom.blk" 

c 

      dimension Xp(NDIMEN),Zval(MAXEQNS),Zdval1(MAXEQNS,2) 

c 

c  ...second order derivatives of the exact solution 

      dimension zdval2(MAXEQNS,2,2) 

      save nflag_dirichlet 

      data nflag_dirichlet/0/ 

c 

      Zval = ZERO 

      Zdval1 = ZERO 

c 

        if(IEQFLAG.eq.1)then 

          if (abs(Xp(2)-1.d0).lt.1.d-6) then 

            Zval(1) = 0.d0; Zval(2) = -1.d0 

          elseif (abs(Xp(2)).lt.1.d-6) then 

            Zval(1) = 0.d0; Zval(2) =  1.d0 

          endif 

        endif 

      return 

      end 
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ALGORYTM INTERPOLACJI BAZUJĄCEJ NA 

PROJEKCJI DLA DWU-WYMIAROWYCH 

SIATEK OBLICZENIOWYCH Z ELEMENTAMI 

TRÓJKĄTNYMI 

Streszczenie 

Artykuł przedstawia zastosowanie algorytmu interpolacji bazu-

jącej na projekcji do aproksymacji dwuwymiarowych bitmap 

reprezentujących zdjęcia struktury wielo-fazowych materiałów. 

Algorytm ten używa h-adaptacyjnej dwuwymiarowej metody 

elementów skończonych z elementami trójkątnymi. W wyniku 

jego zastosowania dostajemy ciągłą aproksymację materiału z 

wykorzystaniem wielomianów Lagrange'a rozpiętych na siatce 

obliczeniowej, na której można następnie przeprowadzić obli-

czenia metodą elementów skończonych. 
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