Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes an electromechanical transient method to build a battery energy storage system-based virtual synchronous generator model, suitable for a large-scale grid. This model consists of virtual synchronous generator control, system limitation and the model interface. The equations of a second-order synchronous machine, the characteristics of charging/discharging power, state of charge, operating efficiency, dead band and inverter limits are also considered. By equipping the energy storage converter into an approximate synchronous voltage source with an excitation system and speed regulation system, the necessary inertia and damping characteristics are provided for the renewable energy power system with low inertia and weak damping. Based on the node current injection method by the power system analysis software package (PSASP), the control model is built to study the influence of different energy storage systems. A study on the impact of renewable energy unit fluctuation on frequency and the active power of the IEEE 4-machine 2-area system is selected for simulation verification. Through reasonable control and flexible allocation of energy storage plants, a stable and friendly frequency environment can be created for power systems with high-penetration renewable energy.
Czasopismo
Rocznik
Tom
Strony
581--599
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
autor
- Lanzhou Resources and Environment Voc-Tech University, China
autor
- Zhengzhou University of Light Industry, China
autor
- Zhengzhou University of Light Industry, China
autor
- Zhengzhou University of Light Industry, China
autor
- Zhengzhou University of Light Industry, China
Bibliografia
- [1] He P., Qi P., Ji Y.Q., Dynamic interactions stability analysis of hybrid renewable energy system with SSSC, Archives of Electrical Engineering, vol. 70, no. 2, pp. 445–462 (2021), DOI: 10.24425/aee.2021.136995.
- [2] Lawder M.T., Suthar B., Northrop P.W.C., Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications, Proceedings of the IEEE, vol. 102, no. 6, pp. 1014–1030 (2014), DOI: 10.1109/JPROC.2014.2317451.
- [3] Zhao G.P., Shi L., Feng B., Development Status and Comprehensive Evaluation Method of Battery Energy Storage Technology in Power System, IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, pp. 2080–2083 (2019), DOI: 10.1109/ITNEC.2019.8729448.
- [4] Lee D.J., Wang L., Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part i: time-domain simulations, IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 311–320 (2008), DOI: 10.1109/TEC.2007.914309.
- [5] Shim J.W., Verbic G., Kim H., On droop control of energy-constrained battery energy storage systems for grid frequency regulation, IEEE Access, vol. 7, pp. 166353–166364 (2019), DOI: 10.1109/ACCESS.2019.2953479.
- [6] Zhang Y., Jiang Z.H., Yu X.W., Control Strategies for Battery/Supercapacitor Hybrid Energy Storage Systems, IEEE Energy 2030 Conference, GA, USA, pp. 1–6 (2008), DOI: 10.1109/ENERGY.2008.4781031.
- [7] Hill C.A., Such M.C., Chen D., Battery energy storage for enabling integration of distributed solar power generation, IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 850–857 (2012), DOI: 10.1109/TSG.2012.2190113.
- [8] Xu T., Jang W., Overbye T., Commitment of fast-responding storage devices to mimic inertia for the enhancement of primary frequency response, IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1219–1230 (2018), DOI: 10.1109/TPWRS.2017.2735990.
- [9] Tamrakar U., Shrestha D., Maharjan M., Virtual inertia: current trends and future directions, Applied Sciences, vol. 7, no. 7, p. 654 (2017), DOI: 10.3390/app7070654.
- [10] Kerdphol T., Rahman F.S., Watanabe M., Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulation, IEEE Access, vol. 7, pp. 14422–14433 (2019), DOI: 10.1109/ACCESS.2019.2892747.
- [11] Bevrani H., Ise T., Miura Y., Virtual synchronous generators: A survey and new perspectives. International Journal of Electrical Power and Energy Systems, vol. 54, no. 1, pp. 244–254 (2014), DOI: 10.1016/j.ijepes.2013.07.009.
- [12] Shi K., Ye H.H., Song W.T., Virtual Inertia Control Strategy in Microgrid Based on Virtual Synchronous Generator Technology, IEEE Access, vol. 6, pp. 27949–27957 (2018), DOI: 10.1109/ACCESS.2018.2839737.
- [13] Wang Y., Liu B., Duan S., Transient Performance Comparison of Modified VSG Controlled Grid Tied Converter, IEEE Applied Power Electronics Conference and Exposition (APEC), CA, USA, pp. 3300–3303 (2019), DOI: 10.1109/APEC.2019.8722121.
- [14] Li H., Gu R.Z., Research on Grid-connected Control and Simulation of Microgrid Inverter Based on VSG, China International Conference on Electricity Distribution (CICED), Tianjin, China, pp. 2066–2070 (2018), DOI: 10.1109/CICED.2018.8592273.
- [15] Liu X., Gong R., A Control Strategy of Microgrid-Connected System Based on VSG. In: International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, pp. 739–743 (2020), DOI: 10.1109/ICPICS50287.2020.9201955.
- [16] Cheng C., Yang H., Zeng Z., Rotor inertia adaptive control method of VSG, Automation Electric Power Systems (in Chinese), vol. 39, no. 19, pp. 82–89 (2015), DOI: 10.7500/AEPS20141130003.
- [17] Power System Analysis Software Package User’s Manual, China, CEPRI, Beijing (2019).
- [18] How D., Hannan M.A., Lipu M.S.H., State of charge estimation for lithium-ion batteries using model based and data-driven methods: a review, IEEE Access, vol. 7, pp. 136116–136136 (2019), DOI: 10.1109/ACCESS.2019.2942213.
- [19] Ye X.H., Liu T., Wu G.Y., Multi-time scale simulation modeling and characteristic analysis of large-scale grid-connected battery energy storage system, Proceedings of the CSEE, vol. 35, no. 11, pp. 2635–2644 (2015), DOI: 10.13334/j.0258-8013.pcsee.2015.11.001 (in Chinese).
- [20] Liu M., Bizzarri F., Brambilla A., On the impact of the dead-band of power system stabilizers and frequency regulation on power system stability, IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3977–3979 (2019), DOI: 10.1109/TPWRS.2019.2920522
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d769487-b134-4844-9f43-2ed27798bda7