Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Haemodialysis (HD) and peritoneal dialysis (PD) are the main kidney replacement therapies for patients with end-stage renal disease. Both of these life-sustaining therapies replace the key functions of the failing kidneys, i.e. the removal of the excess body water and waste products of metabolism as well as the restoration of fluid-electrolyte and acid-base balance. The dialysis-induced multi-scale transport and regulatory processes are complex and difficult to analyse or predict without the use of mathematical and computational models. Here, following a brief introduction to renal replacement therapies, we present an overview of the most important aspects and challenges of HD and PD, indicating the types and examples of mathematical models that are used to study or optimize these therapies. We discuss various compartmental models used for the study of intra- and interdialytic fluid and solute kinetics as well as distributed models of water and solute transport taking place across the peritoneal tissue or in the dialyzer. We also discuss models related to blood volume changes and cardiovascular stability during HD, including models of the thermal balance, likely related to intradialytic hypotension. A short overview of models of acid-base equilibration during HD and mineral metabolism in dialysis patients is also provided, along with a brief outline of models related to blood flow in arteriovenous fistulas and cardiovascular adaptations following the fistula creation. Finally, we discuss the model-based methods of assessment of dialysis adequacy in both HD and PD.
Wydawca
Czasopismo
Rocznik
Tom
Strony
60--78
Opis fizyczny
Bibliogr. 242 poz., rys., tab., wykr.
Twórcy
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- [1] Fresenius Annual Report 2019. Bad Homburg: Fresenius Medical Care AG & Co. KGaA; 2020.
- [2] Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communicationworldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant 2019;34:1803–5.
- [3] Fresenius Annual Report 2018. Care and Live: Fresenius Medical Care AG & Co. KGaA; 2019.
- [4] Pecoits-Filho R, Okpechi IG, Donner JA, Harris DCH, Aljubori HM, Bello AK, et al. Capturing and monitoring global differences in untreated and treated end-stage kidney disease, kidney replacement therapy modality, and outcomes. Kidney Int Suppl (2011) 2020;10:e3–9.
- [5] Locatelli F, Carfagna F, Del Vecchio L, La Milia V. Haemodialysis or haemodiafiltration: that is the question. Nephrol Dial Transplant 2018;33:1896–904.
- [6] Ronco C, Marchionna N, Brendolan A, Neri M, Lorenzin A, Martinez Rueda AJ. Expanded haemodialysis: from operational mechanism to clinical results. Nephrol Dial Transplant 2018;33:iii41–i47.
- [7] Locatelli F, La Milia V, Violo L, Del Vecchio L, Di Filippo S. Optimizing haemodialysate composition. Clin Kidney J 2015;8:580–9.
- [8] Mahmood U, Cho Y, Johnson DW. Peritoneal dialysis solutions. In: Ekart R, editor. Some special problems in peritoneal dialysis: IntechOpen; 2016.
- [9] Daugirdas JT, Blake PG, Ing TS. Handbook of dialysis. Fifth edition. Philadelphia: Wolters Kluwer Health; 2015.
- [10] Pstras L, Waniewski J. Mathematical modelling of haemodialysis: cardiovascular response, body fluid shifts, and solute kinetics. Cham: Springer Nature; 2019.
- [11] Amerling R, Winchester JF, Ronco C. Continuous flow peritoneal dialysis: update 2012. Contrib Nephrol 2012;178:205–15.
- [12] van Esch S, Struijk DG, Krediet RT. The natural time course of membrane alterations during peritoneal dialysis is partly altered by peritonitis. Perit Dial Int 2016;36:448–56.
- [13] Waniewski J, Antosiewicz S, Baczynski D, Poleszczuk J, Pietribiasi M, Lindholm B, et al. Changes of peritoneal transport parameters with time on dialysis: assessment with sequential peritoneal equilibration test. Int J Artif Organs 2017;40:595–601.
- [14] Stachowska-Pietka J, Poleszczuk J, Flessner MF, Lindholm B, Waniewski J. Alterations of peritoneal transport characteristics in dialysis patients with ultrafiltration failure: tissue and capillary components. Nephrol Dial Transplant 2019;34:864–70.
- [15] Kim Y-L, Kawanishi H. The essentials of clinical dialysis. Singapore: Springer; 2018.
- [16] Coli L, Ursino M, De Pascalis A, Brighenti C, Dalmastri V, La Manna G, et al. Evaluation of intradialytic solute and fluid kinetics. Setting Up a predictive mathematical model. Blood Purif 2000;18:37–49.
- [17] Schneditz D, Platzer D, Daugirdas JT. A diffusion-adjusted regional blood flow model to predict solute kinetics during haemodialysis. Nephrol Dial Transplant 2009;24:2218–24.
- [18] Debowska M, Waniewski J, Lindholm B. Dialysis adequacy indices for peritoneal dialysis and hemodialysis. Adv Perit Dial 2005;21:94–7.
- [19] Debowska M, Waniewski J, Lindholm B. Bimodal dialysis: theoretical and computational investigations of adequacy indices for combined use of peritoneal dialysis and hemodialysis. ASAIO J 2007;53:566–75.
- [20] Eloot S, Vierendeels J, Verdonck P. Optimisation of solute transport in dialysers using a three-dimensional finite volume model. Comput Methods Biomech Biomed Engin 2006;9:363–70.
- [21] Donato D, Boschetti-de-Fierro A, Zweigart C, Kolb M, Eloot S, Storr M, et al. Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model. J Membr Sci 2017;541:519–28.
- [22] Rippe B, Venturoli D, Simonsen O, de Arteaga J. Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model. Perit Dial Int 2004;24:10–27.
- [23] Dedrick RL, Flessner MF, Collins JM, Schultz JS. Is the peritoneum a membrane? ASAIO J 1982;5:1–8.
- [24] Daugirdas JT, Depner TA, Greene T, Silisteanu P. Solutesolver: a web-based tool for modeling urea kinetics for a broad range of hemodialysis schedules in multiple patients. Am J Kidney Dis 2009;54:798–809.
- [25] Debowska M, Waniewski J, Lindholm B. An integrative description of dialysis adequacy indices for different treatment modalities and schedules of dialysis. Artif Organs 2007;31:61–9.
- [26] Ursino M, Coli L, Brighenti C, Chiari L, de Pascalis A, Avanzolini G. Prediction of solute kinetics, acid-base status, and blood volume changes during profiled hemodialysis. Ann Biomed Eng 2000;28:204–16.
- [27] de los Reyes VA, Fuertinger DH, Kappel F, Meyring-Wosten A, Thijssen S, Kotanko P. A physiologically based model of vascular refilling during ultrafiltration in hemodialysis. J Theor Biol 2016;390:146–55.
- [28] Ursino M, Innocenti M. Modeling arterial hypotension during hemodialysis. Artif Organs 1997;21:873–90.
- [29] Cavalcanti S, Di Marco LY. Numerical simulation of the hemodynamic response to hemodialysis-induced hypovolemia. Artif Organs 1999;23:1063–73.
- [30] Coli L, Ursino M, Dalmastri V, Volpe F, La Manna G, Avanzolini G, et al. A simple mathematical model applied to selection of the sodium profile during profiled haemodialysis. Nephrol Dial Transplant 1998;13:404–16.
- [31] Ursino M, Donati G. Mathematical Model of Potassium Profiling in Chronic Dialysis. Contrib Nephrol 2017;190:134–45.
- [32] Gotch FA, Keen ML, Yarian SR. An analysis of thermal regulation in hemodialysis with one and three compartment models. ASAIO Trans 1989;35:622–4.
- [33] Droog RP, Kingma BR, van Marken Lichtenbelt WD, Kooman JP, van der Sande FM, Levin NW, et al. Mathematical modeling of thermal and circulatory effects during hemodialysis. Artif Organs 2012;36:797–811.
- [34] Ene-Iordache B, Remuzzi A. Blood flow in idealized vascular access for hemodialysis: a review of computational studies. Cardiovasc Eng Technol 2017;8:295–312.
- [35] Grechy L, Iori F, Corbett RW, Gedroyc W, Duncan N, Caro CG, et al. The effect of arterial curvature on blood flow in arterio-venous fistulae: realistic geometries and pulsatile flow. Cardiovasc Eng Technol 2017;8:313–29.
- [36] Casagrande G, Lanzarone E, Miglietta F, Remuzzi A, Fumero R, Costantino ML. Determination of cardiovascular mechanics evolution in the presence of the arteriovenous fistula. ASAIO J 2009;55:484–93.
- [37] Manini S, Passera K, Huberts W, Botti L, Antiga L, Remuzzi A. Computational model for simulation of vascular adaptation following vascular access surgery in haemodialysis patients. Comput Methods Biomech Biomed Engin 2014;17:1358–67.
- [38] Cavalcanti S, Cavani S, Santoro A. Role of short-term regulatory mechanisms on pressure response to hemodialysis-induced hypovolemia. Kidney Int 2002;61:228–38.
- [39] Ursino M, Innocenti M. Mathematical investigation of some physiological factors involved in hemodialysis hypotension. Artif Organs 1997;21:891–902.
- [40] Schneditz D, Galach M, Thomaseth K, Waniewski J. A regional blood flow model for glucose and insulin kinetics during hemodialysis. ASAIO J 2013;59:627–35.
- [41] Galach M, Werynski A, Waniewski J, Freida P, Lindholm B. Kinetic analysis of peritoneal fluid and solute transport with combination of glucose and icodextrin as osmotic agents. Perit Dial Int 2009;29:72–80.
- [42] Riggs MM, Peterson MC, Gastonguay MR. Multiscale physiology-based modeling of mineral bone disorder in patients with impaired kidney function. J Clin Pharmacol 2012;52:45S–53S.
- [43] Spalding EM, Chamney PW, Farrington K. Phosphate kinetics during hemodialysis: Evidence for biphasic regulation. Kidney Int 2002;61:655–67.
- [44] Ciandrini A, Severi S, Cavalcanti S, Fontanazzi F, Grandi F, Buemi M, et al. Model-based analysis of potassium removal during hemodialysis. Artif Organs 2009;33:835–43.
- [45] Pietribiasi M, Waniewski J, Wojcik-Zaluska A, Zaluska W, Lindholm B. Model of fluid and solute shifts during hemodialysis with active transport of sodium and potassium. PLoS ONE 2018;13 e0209553.
- [46] Sargent JA, Marano M, Marano S, Gennari FJ. Acid-base homeostasis during hemodialysis: New insights into the mystery of bicarbonate disappearance during treatment. Semin Dial 2018;31:468–78.
- [47] Leypoldt JK, Pietribiasi M, Ebinger A, Kraus MA, Collins A, Waniewski J. Acid-base kinetics during hemodialysis using bicarbonate and lactate as dialysate buffer bases based on the H(+) mobilization model. Int J Artif Organs 2020;43:645–52.
- [48] Eloot S, Schneditz D, Vanholder R. What can the dialysis physician learn from kinetic modelling beyond Kt/V(urea)? Nephrol Dial Transplant 2012;27:4021–9.
- [49] Debowska M, Lindholm B, Waniewski J. Adequacy indices for dialysis in acute renal failure: kinetic modeling. Artif Organs 2010;34:412–9.
- [50] Waniewski J, Debowska M, Lindholm B. Theoretical and numerical analysis of different adequacy indices for hemodialysis and peritoneal dialysis. Blood Purif 2006;24:355–66.
- [51] Agar BU, Akonur A, Lo YC, Cheung AK, Leypoldt JK. Kinetic model of phosphorus mobilization during and after short and conventional hemodialysis. Clin J Am Soc Nephrol 2011;6:2854–60.
- [52] Daugirdas JT. A two-pool kinetic model predicts phosphate concentrations during and shortly following a conventional (three times weekly) hemodialysis session. Nephrol Dial Transplant 2018;33:76–84.
- [53] Leypoldt JK, Jaber BL, Lysaght MJ, McCarthy JT, Moran J. Kinetics and dosing predictions for daily haemofiltration. Nephrol Dial Transplant 2003;18:769–76.
- [54] Pietribiasi M, Waniewski J, Zaluska W, Wojcik-Zaluska A, Leypoldt JK. Comparison of two single-solute models of potassium kinetics during hemodialysis. Biocybern Biomed Eng 2020;40:938–49.
- [55] Vanholder RC, Glorieux GL. An overview of uremic toxicity. Hemodial Int 2003;7:156–61.
- [56] Dumler F. Best method for estimating urea volume of distribution: comparison of single pool variable volume kinetic modeling measurements with bioimpedance and anthropometric methods. ASAIO J 2004;50:237–41.
- [57] Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006;27:921–33.
- [58] Sargent JA, Gotch FA. Mathematic modeling of dialysis therapy. Kidney Int Suppl 1980;10:S2–S10.
- [59] Sargent JA, Gotch FA. Principles and biophysics of dialysis. In: Jacobs C, Kjellstrand CM, Koch KM, Winchester JF, editors. Replacement of renal function by dialysis. Dordrecht: Springer, Netherlands; 1996. p. 34–102.
- [60] Leypoldt JK. The artificial kidney: physiological modeling and tissue engineering. Dallas: R. G. Landes Company; 1999.
- [61] Ziolko M, Pietrzyk JA, Grabska-Chrzastowska J. Accuracy of hemodialysis modeling. Kidney Int 2000;57:1152–63.
- [62] Severi S, Cavalcanti S. Electrolyte and pH dependence of heart rate during hemodialysis: a computer model analysis. Artif Organs 2000;24:245–60.
- [63] Maheshwari V, Thijssen S, Tao X, Fuertinger D, Kappel F, Kotanko P. A novel mathematical model of protein-bound uremic toxin kinetics during hemodialysis. Sci Rep 2017;7:10371.
- [64] Schneditz D, Van Stone JC, Daugirdas JT. A regional blood circulation alternative to in-series two compartment urea kinetic modeling. ASAIO J 1993;39:M573–7.
- [65] Schneditz D, Daugirdas JT. Formal analytical solution to a regional blood flow and diffusion based urea kinetic model. ASAIO J 1994;40:M667–73.
- [66] Korohoda P, Schneditz D. Analytical solution of multicompartment solute kinetics for hemodialysis. Comput Math Methods Med 2013;2013 654726.
- [67] Grandi F, Avanzolini G, Cappello A. Analytic solution of the Variable-Volume Double-Pool urea kinetics model applied to parameter estimation in hemodialysis. Comput Biol Med 1995;25:505–18.
- [68] Casagrande G, Bianchi C, Vito D, Carfagna F, Minoretti C, Pontoriero G, et al. Patient-specific modeling of multicompartmental fluid and mass exchange during dialysis. Int J Artif Organs 2016;39:220–7.
- [69] Bianchi C, Lanzarone E, Casagrande G, Costantino ML. A Bayesian approach for the identification of patient-specific parameters in a dialysis kinetic model. Stat Methods Med Res 2019;28:2069–95.
- [70] Daugirdas JT. Solute solver ’what if’ module for modeling urea kinetics. Nephrol Dial Transplant 2016;31:1934–7.
- [71] Flythe JE. Turning the tide: improving fluid management in dialysis through technology. J Am Soc Nephrol 2017;28:2260–2.
- [72] Hecking M, Moissl U, Genser B, Rayner H, Dasgupta I, Stuard S, et al. Greater fluid overload and lower interdialytic weight gain are independently associated with mortality in a large international hemodialysis population. Nephrol Dial Transplant 2018;33:1832–42.
- [73] Flythe JE, Chang TI, Gallagher MP, Lindley E, Madero M, Sarafidis PA, et al. Blood pressure and volume management in dialysis: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2020;97:861–76.
- [74] Pietribiasi M, Katzarski K, Galach M, Stachowska-Pietka J, Schneditz D, Lindholm B, et al. Kinetics of plasma refilling during hemodialysis sessions with different initial fluid status. ASAIO J 2015;61:350–6.
- [75] Chamney P, Wabel P, Krämer M, Isermann R. Simulation of active vascular refilling in haemodialysis patients. Modelling and control in biomedical systems: workshop IFAC. Greifswald, 2000.
- [76] Pietribiasi M, Waniewski J, Zaluska A, Zaluska W, Lindholm B. Modelling transcapillary transport of fluid and proteins in hemodialysis patients. PLoS ONE 2016;11 e0159748.
- [77] Pietribiasi M, Wojcik-Zaluska A, Zaluska W, Waniewski J. Does the plasma refilling coefficient change during hemodialysis sessions? Int J Artif Organs 2018;41:706–13.
- [78] Possenti L, Casagrande G, Di Gregorio S, Zunino P, Costantino ML. Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. Microvasc Res 2019;122:101–10.
- [79] Mc Causland FR, Tumlin JA, Roy-Chaudhury P, Koplan BA, Costea AI, Kher V, et al. Intradialytic hypotension and cardiac arrhythmias in patients undergoing maintenance hemodialysis: results from the monitoring in dialysis study. Clin J Am Soc Nephrol 2020;15:805–12.
- [80] Correa S, Pena-Esparragoza JK, Scovner KM, Mc Causland FR. Predictors of intradialytic symptoms: an analysis of data from the hemodialysis study. Am J Kidney Dis 2020;76:331–9.
- [81] Cavalcanti S, Cavani S, Ciandrini A, Avanzolini G. Mathematical modeling of arterial pressure response to hemodialysis-induced hypovolemia. Comput Biol Med 2006;36:128–44.
- [82] Pstras L, Waniewski J, Lindholm B. Transcapillary transport of water, small solutes and proteins during hemodialysis. Sci Rep 2020;10:18736.
- [83] Pstras L, Debowska M, Wojcik-Zaluska A, Zaluska W, Waniewski J. Hemodialysis-induced changes in hematocrit, hemoglobin and total protein: Implications for relative blood volume monitoring. PLoS ONE 2019;14 e0220764.
- [84] Pstras L, Waniewski J, Wojcik-Zaluska A, Zaluska W. Relative blood volume changes during haemodialysis estimated from haemoconcentration markers. Sci Rep 2020;10:14809.
- [85] Pstras L, Waniewski J, Lindholm B. Monitoring relative blood volume changes during hemodialysis: Impact of the priming procedure. Artif Organs 2021;45:1189–94.
- [86] Balter P, Artemyev M, Zabetakis P. Methods and challenges for the practical application of Crit-LineTM monitor utilization in patients on hemodialysis. Blood Purif 2015;39:21–4.
- [87] Alayoud A, Belarabi M, Labrini F, Badaoui M, Zajjari Y, Maoujoud O, et al. Utility of a blood volume monitor in the management of anemia in dialysis by computing the total hemoglobin mass. Hemodial Int 2019;23:419–25.
- [88] Nesrallah GE, Suri RS, Guyatt G, Mustafa RA, Walter SD, Lindsay RM, et al. Biofeedback dialysis for hypotension and hypervolemia: a systematic review and meta-analysis. Nephrol Dial Transplant 2013;28:182–91.
- [89] Mann H, Stiller S. Sodium modeling. Kidney Int Suppl 2000;76:S79–88.
- [90] Baigent S, Unwin R, Yeng CC. Mathematical modelling of profiled haemodialysis: A simplified approach. J Theor Med 2001;3 404275.
- [91] Abohtyra R, Chait Y, Germain MJ, Hollot CV, Horowitz J. Individualization of ultrafiltration in hemodialysis. IEEE Trans Biomed Eng 2019;66:2174–81.
- [92] Javed F, Savkin AV, Chan GS, Middleton PM, Malouf P, Steel E, et al. Model predictive control of relative blood volume and heart rate during hemodialysis. Med Biol Eng Comput 2010;48:389–97.
- [93] Javed F, Savkin AV, Chan GS, Mackie JD, Lovell NH. Identification and control for automated regulation of hemodynamic variables during hemodialysis. IEEE Trans Biomed Eng 2011;58:1686–97.
- [94] Leung KCW, Quinn RR, Ravani P, Duff H, MacRae JM. Randomized crossover trial of blood volume monitoring-guided ultrafiltration biofeedback to reduce intradialytic hypotensive episodes with hemodialysis. Clin J Am Soc Nephrol 2017;12:1831–40.
- [95] Hecking M, Schneditz D. Feedback control in hemodialysis-much ado about nothing? Clin J Am Soc Nephrol 2017;12:1730–2.
- [96] Maggiore Q, Dattolo P, Piacenti M, Morales MA, Pelosi G, Pizzarelli F, et al. Thermal balance and dialysis hypotension. Int J Artif Organs 1995;18:518–25.
- [97] Schneditz D. Temperature and thermal balance in hemodialysis. Semin Dial 2001;14:357–64.
- [98] van der Sande FM, Wystrychowski G, Kooman JP, Rosales L, Raimann J, Kotanko P, et al. Control of core temperature and blood pressure stability during hemodialysis. Clin J Am Soc Nephrol 2009;4:93–8.
- [99] Bullen A, Rifkin D, Trzebinska D. Individualized cool dialysate as an effective therapy for intradialytic hypotension and hemodialysis patients’ perception. Ther Apher Dial 2019;23:145–52.
- [100] Tentori F, Karaboyas A, Robinson BM, Morgenstern H, Zhang J, Sen A, et al. Association of dialysate bicarbonate concentration with mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2013;62:738–46.
- [101] Tovbin D, Sherman RA. Correcting acidosis during hemodialysis: current limitations and a potential solution. Semin Dial 2016;29:35–8.
- [102] Wolf MB. Physicochemical models of acid-base. Semin Nephrol 2019;39:328–39.
- [103] Andreassen S, Rees SE. Mathematical models of oxygen and carbon dioxide storage and transport: interstitial fluid and tissue stores and whole-body transport. Crit Rev Biomed Eng 2005;33:265–98.
- [104] Rees SE, Andreassen S. Mathematical models of oxygen and carbon dioxide storage and transport: the acid-base chemistry of blood. Crit Rev Biomed Eng 2005;33:209–64.
- [105] Wolf MB. Whole body acid-base and fluid-electrolyte balance: a mathematical model. Am J Physiol Renal Physiol 2013;305:F1118–31.
- [106] Ježek F, Kofránek J. Modern and traditional approaches combined into an effective gray-box mathematical model of full-blood acid-base. Theor Biol Med Modell 2018;15:14.
- [107] Leypoldt JK, Pietribiasi M, Echeverri J, Harenski K. Modeling acid-base balance during continuous renal replacement therapy. J Clin Monit Comput 2021.
- [108] Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 2015;10:1257–72.
- [109] Ott SM. Therapy for patients with CKD and low bone mineral density. Nat Rev Nephrol 2013;9:681–92.
- [110] KDIGO CKD-MBD Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 2011;2017(7):1–59.
- [111] Debowska M, Poleszczuk J, Wojcik-Zaluska A, Ksiazek A, Zaluska W. Phosphate kinetics during weekly cycle of hemodialysis sessions: application of mathematical modeling. Artif Organs 2015;39:1005–14.
- [112] Poleszczuk J, Debowska M, Wojcik-Zaluska A, Ksiazek A, Zaluska W. Phosphate kinetics in hemodialysis: application of delayed pseudo one-compartment model. Blood Purif 2016;42:177–85.
- [113] di Filippo S, Carfagna F, la Milia V, Bellasi A, Casagrande G, Bianchi C, et al. Assessment of intradialysis calcium mass balance by a single pool variable-volume calcium kinetic model. Hemodial Int 2018;22:126–35.
- [114] Hall J, Guyton A. Handbook of physiology. Philadelphia, PA: Saunders Elsevier; 2011.
- [115] Bos WJ, Zietse R, Wesseling KH, Westerhof N. Effects of arteriovenous fistulas on cardiac oxygen supply and demand. Kidney Int 1999;55:2049–53.
- [116] Savage MT, Ferro CJ, Sassano A, Tomson CR. The impact of arteriovenous fistula formation on central hemodynamic pressures in chronic renal failure patients: a prospective study. Am J Kidney Dis 2002;40:753–9.
- [117] Dundon BK, Torpey K, Nelson AJ, Wong DT, Duncan RF, Meredith IT, et al. The deleterious effects of arteriovenous fistula-creation on the cardiovascular system: a longitudinal magnetic resonance imaging study. Int J Nephrol Renovasc Dis 2014;7:337–45.
- [118] MacRae JM, Pandeya S, Humen DP, Krivitski N, Lindsay RM. Arteriovenous fistula-associated high-output cardiac failure: a review of mechanisms. Am J Kidney Dis 2004;43: e17–22.
- [119] Huberts W, Bode AS, Kroon W, Planken RN, Tordoir JH, van de Vosse FN, et al. A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med Eng Phys 2012;34:233–48.
- [120] Caroli A, Manini S, Antiga L, Passera K, Ene-Iordache B, Rota S, et al. Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int 2013;84:1237–45.
- [121] Bozzetto M, Rota S, Vigo V, Casucci F, Lomonte C, Morale W, et al. Clinical use of computational modeling for surgical planning of arteriovenous fistula for hemodialysis. BMC Med Inf Decis Making 2017;17:26.
- [122] Bozzetto M, Ene-Iordache B, Remuzzi A. Transitional flow in the venous side of patient-specific arteriovenous fistulae for hemodialysis. Ann Biomed Eng 2016;44:2388–401.
- [123] Remuzzi A, Bozzetto M, Brambilla P. Is shear stress the key factor for AVF maturation? J Vasc Access 2017;18:10–4.
- [124] Gemert MJCV, Bruyninckx CMA, Baggen MJH. Shunt haemodynamics and extracorporeal dialysis: an electrical resistance network analysis. Phys Med Biol 1984;29:219–35.
- [125] Georgianos PI, Agarwal R. Systolic and diastolic hypertension among patients on hemodialysis: Musings on volume overload, arterial stiffness, and erythropoietin. Semin Dial 2019;32:507–12.
- [126] Poleszczuk J, Debowska M, Dabrowski W, Wojcik-Zaluska A, Zaluska W, Waniewski J. Patient-specific pulse wave propagation model identifies cardiovascular risk characteristics in hemodialysis patients. PLoS Comput Biol 2018;14 e1006417.
- [127] Poleszczuk J, Debowska M, Dabrowski W, Wojcik-Zaluska A, Zaluska W, Waniewski J. Subject-specific pulse wave propagation modeling: Towards enhancement of cardiovascular assessment methods. PLoS ONE 2018;13 e0190972.
- [128] Debowska M, Poleszczuk J, Dabrowski W, Wojcik-Zaluska A, Zaluska W, Waniewski J. Impact of hemodialysis on cardiovascular system assessed by pulse wave analysis. PLoS ONE 2018;13 e0206446.
- [129] Bos WJ, Bruin S, van Olden RW, Keur I, Wesseling KH, Westerhof N, et al. Cardiac and hemodynamic effects of hemodialysis and ultrafiltration. Am J Kidney Dis 2000;35:819–26.
- [130] Ding W, Li W, Sun S, Zhou X, Hardy PA, Ahmad S, et al. Three-dimensional simulation of mass transfer in artificial kidneys. Artif Organs 2015;39:E79–89.
- [131] Annan K. Mathematical modeling for hollow fiber dialyzer: blood and HCO3-dialysate flow characteristics. Int J Pure Appl Math 2012;79:425–52.
- [132] Rambod E, Beizai M, Rosenfeld M. An experimental and numerical study of the flow and mass transfer in a model of the wearable artificial kidney dialyzer. Biomed Eng Online 2010;9:21.
- [133] Eloot S, De Wachter D, Van Tricht I, Verdonck P. Computational flow modeling in hollow-fiber dialyzers. Artif Organs 2002;26:590–9.
- [134] Sigdell JE. A mathematical theory for the capillary artificial kidney. Stuttgart: Hippokrates; 1974.
- [135] Jaffrin MY, Ding LH, Laurent JM. Simultaneous convective and diffusive mass transfers in a hemodialyser. J Biomech Eng 1990;112:212–9.
- [136] Sigdell JE. Calculation of combined diffusive and convective mass transfer. Int J Artif Organs 1982;5:361–72.
- [137] Waniewski J. Theoretical foundations for modeling of membrane transport in medicine and biomedical engineering. Warsaw: IPI PAN; 2015.
- [138] Waniewski J, Werynski A, Ahrenholz P, Lucjanek P, Judycki W, Esther G. Theoretical basis and experimental verification of the impact of ultrafiltration on dialyzer clearance. Artif Organs 1991;15:70–7.
- [139] Waniewski J, Lucjanek P, Werynski A. Alternative descriptions of combined diffusive and convective mass transport in hemodialyzer. Artif Organs 1993;17(1):3–7.
- [140] Waniewski J, Lucjanek P, Werynski A. Impact of ultrafiltration on back-diffusion in hemodialyzer. Artif Organs 1994;18:933–41.
- [141] Galach M, Ciechanowska A, Sabalinska S, Waniewski J, Wojcicki J, Werynski A. Impact of convective transport on dialyzer clearance. J Artif Organs 2003;6:42–8.
- [142] Depner TA, Greene T, Daugirdas JT, Cheung AK, Gotch FA, Leypoldt JK. Dialyzer performance in the HEMO Study: in vivo K0A and true blood flow determined from a model of cross-dialyzer urea extraction. ASAIO J 2004;50:85–93.
- [143] Hörl WH, Koch K-M, Lindsay RM, Ronco C, Winchester JFe. Replacement of renal function by dialysis. 5th ed. Dordrecht: Springer Netherlands; 2004.
- [144] Waniewski J, Poleszczuk J, Pietribiasi M, Debowska M, Wojcik-Zaluska A, Zaluska W. Impact of solute exchange between erythrocytes and plasma on hemodialyzer clearance. Biocybern Biomed Eng 2020;40:265–76.
- [145] Henderson LW, Nolph KD. Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 1969;48:992–1001.
- [146] Morelle J, Stachowska-Pietka J, Öberg C, Gadola L, La Milia V, Yu Z, et al. ISPD Recommendations for the evaluation of peritoneal membrane dysfunction in adults: classification, measurement, interpretation and rationale for intervention. Perit Dial Int 2021;41:352–72.
- [147] Oberg CM, Rippe B. Optimizing Automated Peritoneal Dialysis Using an Extended 3-Pore Model. Kidney Int Rep 2017;2:943–51.
- [148] Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int 1989;35:1234–44.
- [149] Ho-dac-Pannekeet MM, Schouten N, Langendijk MJ, Hiralall JK, de Waart DR, Struijk DG, et al. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int 1996;50:979–86.
- [150] Parikova A, Smit W, Struijk DG, Krediet RT. Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int 2006;70:1988–94.
- [151] Stachowska-Pietka J, Poleszczuk J, Teixido-Planas J, BonetSol J, Troya-Saborido MI, Waniewski J. Fluid tonicity affects peritoneal characteristics derived by 3-pore model. Perit Dial Int 2019;39:243–51.
- [152] Leypoldt JK. Interpreting peritoneal membrane osmotic reflection coefficients using a distributed model of peritoneal transport. Adv Perit Dial 1993;9:3–7.
- [153] Leypoldt JK, Henderson LW. The effect of convection on bidirectional peritoneal solute transport: predictions from a distributed model. Ann Biomed Eng 1992;20:463–80.
- [154] Flessner MF, Dedrick RL, Schultz JS. A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 1984;246:R597–607.
- [155] Heimburger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int 1992;41:1320–32.
- [156] Waniewski J, Heimburger O, Werynski A, Lindholm B. Aqueous solute concentrations and evaluation of mass transport coefficients in peritoneal dialysis. Nephrol Dial Transplant 1992;7:50–6.
- [157] Waniewski J, Heimbürger O, Werynski A, Lindholm B. Diffusive mass transport coefficients are not constant during a single exchange in continuous ambulatory peritoneal dialysis. ASAIO J 1996;42:M518–23.
- [158] Waniewski J, Sobiecka D, Debowska MH, Ollof WA, Lindholm B. Fluid and solute transport in CAPD patients before and after permanent loss of ultrafiltration capacity. Int J Artif Organs 2005;28:976–86.
- [159] Waniewski J, Heimbürger O, Werynski A, Park MS, Lindholm B. Diffusive and convective solute transport in peritoneal dialysis with glucose as an osmotic agent. Artif Organs 1995;19:295–306.
- [160] Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int 1994;46:333–40.
- [161] Imholz AL, Koomen GC, Voorn WJ, Struijk DG, Arisz L, Krediet RT. Day-to-day variability of fluid and solute transport in upright and recumbent positions during CAPD. Nephrol Dial Transplant 1998;13:146–53.
- [162] Twardowski ZJ, Nolph KD, Khanna R, Prowant BF, Ryan LP, Moore HL, et al. Peritoneal equilibration test. Perit Dial Bull 1987;7:138–47.
- [163] Heimbürger O, Waniewski J, Werynski A, Park MS, Lindholm B. Lymphatic absorption in CAPD patients with loss of ultrafiltration capacity. Blood Purif 1995;13:327–39.
- [164] Heimbürger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990;38:495–506.
- [165] Van Biesen W, Van der Tol A, Veys N, Dequidt C, Vijt D, Lameire N, et al. The personal dialysis capacity test is superior to the peritoneal equilibration test to discriminate inflammation as the cause of fast transport status in peritoneal dialysis patients. Clin J Am Soc Nephrol 2006;1:269–74.
- [166] Sampimon DE, Coester AM, Struijk DG, Krediet RT. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis. Nephrol Dial Transplant 2011;26:291–8.
- [167] Balafa O, Halbesma N, Struijk DG, Dekker FW, Krediet RT. Peritoneal albumin and protein losses do not predict outcome in peritoneal dialysis patients. Clin J Am Soc Nephrol 2011;6:561–6.
- [168] Stachowska-Pietka J, Waniewski J, Vonesh E, Lindholm B. Changes in free water fraction and aquaporin function with dwell time during continuous ambulatory peritoneal dialysis. Artif Organs 2010;34:1138–43.
- [169] Waniewski J. A mathematical model of local stimulation of perfusion by vasoactive agent diffusing from tissue surface. Cardiovasc Eng 2004;4:115–23.
- [170] Waniewski J, Debowska M, Lindholm B. How accurate is the description of transport kinetics in peritoneal dialysis according to different versions of the three-pore model? Perit Dial Int 2008;28:53–60.
- [171] Fischbach M, Haraldsson B. Dynamic changes of the total pore area available for peritoneal exchange in children. J Am Soc Nephrol 2001;12:1524–9.
- [172] Haraldsson B, Broms E, Johansson AC. How to evaluate and optimize peritoneal dialysis treatment. Nephrol Dial Transplant 1998;13(Suppl 6):112–6.
- [173] Freida P, Galach M, Divino Filho JC, Werynski A, Lindholm B. Combination of crystalloid (glucose) and colloid (icodextrin) osmotic agents markedly enhances peritoneal fluid and solute transport during the long PD dwell. Perit Dial Int 2007;27:267–76.
- [174] Olszowska A, Waniewski J, Werynski A, Marciniak M, Wankowicz Z. Comparison of peritoneal transport of solutes and water during CAPD with glucose or amino acids solutions. Preliminary report. Pol Merkur Lekarski 2002;13:389–92.
- [175] Park MS, Heimburger O, Bergstrom J, Waniewski J, Werynski A, Lindholm B. Peritoneal transport during dialysis with amino acid-based solutions. Perit Dial Int 1993;13:280–8.
- [176] Morelle J, Sow A, Fustin CA, Fillee C, Garcia-Lopez E, Lindholm B, et al. Mechanisms of crystalloid versus colloid osmosis across the peritoneal membrane. J Am Soc Nephrol 2018;29:1875–86.
- [177] Leypoldt JK, Hoff CM, Akonur A, Holmes CJ. Low-polydispersity glucose polymers as osmotic agents for peritoneal dialysis. Perit Dial Int 2015;35:428–35.
- [178] Rippe B, Venturoli D. Optimum electrolyte composition of a dialysis solution. Perit Dial Int 2008;28(Suppl 3):S131–6.
- [179] Rippe B, Levin L. Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD. Kidney Int 2000;57:2546–56.
- [180] Galach M, Waniewski J, Axelsson J, Heimburger O, Werynski A, Lindholm B. Mathematical modeling of the glucose-insulin system during peritoneal dialysis with glucose-based fluids. ASAIO J 2011;57:41–7.
- [181] Galach M, Waniewski J. Membrane transport of several ions during peritoneal dialysis: mathematical modeling. Artif Organs 2012;36:E163–78.
- [182] Coester AM, Zweers MM, de Waart DR, Krediet RT. The relationship between effluent potassium due to cellular release, free water transport and CA125 in peritoneal dialysis patients. NDT Plus 2008;1:iv41–5.
- [183] Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int 1993;44:1078–85.
- [184] Lindholm B, Heimburger O, Waniewski J, Werynski A, Bergstrom J. Peritoneal ultrafiltration and fluid reabsorption during peritoneal dialysis. Nephrol Dial Transplant 1989;4:805–13.
- [185] Flessner M. Effective lymphatic absorption rate is not a useful or accurate term to use in the physiology of peritoneal dialysis. Perit Dial Int 2004;24:313–6.
- [186] Flessner MF. Transport of protein in the abdominal wall during intraperitoneal therapy. I. Theoretical approach. Am J Physiol Gastrointest Liver Physiol 2001;281:G424–37.
- [187] Waniewski J, Paniagua R, Stachowska-Pietka J, Ventura MD, Avila-Diaz M, Prado-Uribe C, et al. Threefold peritoneal test of osmotic conductance, ultrafiltration efficiency, and fluid absorption. Perit Dial Int 2013;33:419–25.
- [188] Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 1991;40:315–25.
- [189] Pannekeet MM, Imholz AL, Struijk DG, Koomen GC, Langedijk MJ, Schouten N, et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int 1995;48:866–75.
- [190] La Milia V, Limardo M, Virga G, Crepaldi M, Locatelli F. Simultaneous measurement of peritoneal glucose and free water osmotic conductances. Kidney Int 2007;72:643–50.
- [191] La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell’Oro C, Andrulli S, et al. Mini-peritoneal equilibration test: A simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int 2005;68:840–6.
- [192] Smit W, Struijk DG, Ho-Dac-Pannekeet MM, Krediet RT. Quantification of free water transport in peritoneal dialysis. Kidney Int 2004;66:849–54.
- [193] Venturoli D, Rippe B. Validation by computer simulation of two indirect methods for quantification of free water transport in peritoneal dialysis. Perit Dial Int 2005;25:77–84.
- [194] Waniewski J, Debowska M, Lindholm B. Ultrafiltration and absorption in evaluating aquaporin function from peritoneal transport of sodium. Perit Dial Int 2007;27:687–90.
- [195] Krediet RT. Ultrafiltration failure is a reflection of peritoneal alterations in patients treated with peritoneal dialysis. Front Physiol 2018;9:1815.
- [196] Morelle J, Sow A, Hautem N, Bouzin C, Crott R, Devuyst O, et al. Interstitial fibrosis restricts osmotic water transport in encapsulating peritoneal sclerosis. J Am Soc Nephrol 2015;26:2521–33.
- [197] Stachowska-Pietka J, Waniewski J. Distributed modeling of glucose induced osmotic fluid flow during single exchange with hypertonic glucose solution. Biocybern Biomed Eng 2011;31:39–50.
- [198] Stachowska-Pietka J, Waniewski J. Distributed models of peritoneal transport. In: Krediet RT, editor. Progress in peritoneal dialysis. Rijeka: InTech; 2011. p. 23–48.
- [199] Stachowska-Pietka J, Waniewski J, Flessner MF, Lindholm B. Distributed model of peritoneal fluid absorption. Am J Physiol Heart Circ Physiol 2006;291:H1862–74.
- [200] Stachowska-Pietka J, Waniewski J, Flessner MF, Lindholm B. Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: a spatially distributed approach. Am J Physiol Renal Physiol 2012;302: F1331–41.
- [201] Stachowska-Pietka J, Waniewski J, Flessner MF, Lindholm B. Concomitant bidirectional transport during peritoneal dialysis can be explained by a structured interstitium. Am J Physiol Heart Circ Physiol 2016;310:H1501–11.
- [202] Waniewski J, Stachowska-Pietka J, Flessner MF. Distributed modeling of osmotically driven fluid transport in peritoneal dialysis: theoretical and computational investigations. Am J Physiol Heart Circ Physiol 2009;296:H1960–8.
- [203] Waniewski J, Antosiewicz S, Baczynski D, Poleszczuk J, Pietribiasi M, Lindholm B, et al. Peritoneal fluid transport rather than peritoneal solute transport associates with dialysis vintage and age of peritoneal dialysis patients. Comput Math Methods Med 2016;2016:8204294.
- [204] Waniewski J. Distributed modeling of diffusive solute transport in peritoneal dialysis. Ann Biomed Eng 2002;30:1181–95.
- [205] Cherniha R, Stachowska-Pietka J, Waniewski J. A mathematical model for transport in poroelastic materials with variable volume: derivation, lie symmetry analysis, and examples. Symmetry 2020;12:396.
- [206] Gotch FA, Sargent JA, Keen ML, Lee M. Individualized, quantified dialysis therapy of uremia. Proc Clin Dial Transplant Forum 1974:27–35.
- [207] Gotch FA, Sargent JA. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int 1985;28:526–34.
- [208] National Kidney F. KDOQI Clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis 2015;66:884–930.
- [209] Tattersall J, Martin-Malo A, Pedrini L, Basci A, Canaud B, Fouque D, et al. EBPG guideline on dialysis strategies. Nephrol Dial Transplant 2007;22(Suppl 2):ii5–ii21.
- [210] Dombros N, Dratwa M, Feriani M, Gokal R, Heimburger O, Krediet R, et al. European best practice guidelines for peritoneal dialysis. 7 Adequacy of peritoneal dialysis. Nephrol Dial Transplant 2005;20(Suppl 9):ix24–7.
- [211] Waniewski J, Debowska M, Lindholm B. Can the diverse family of dialysis adequacy indices be understood as one integrated system? Blood Purif 2010;30:257–65.
- [212] Casino FG, Lopez T. The equivalent renal urea clearance: a new parameter to assess dialysis dose. Nephrol Dial Transplant 1996;11:1574–81.
- [213] Gotch FA. The current place of urea kinetic modelling with respect to different dialysis modalities. Nephrol Dial Transplant 1998;13(Suppl 6):10–4.
- [214] Waniewski J, Debowska M, Wojcik-Zaluska A, Ksiazek A, Zaluska W. Quantification of dialytic removal and extracellular calcium mass balance during a weekly cycle of hemodialysis. PLoS ONE 2016;11 e0153285.
- [215] Casino FG, Basile C. The variable target model: a paradigm shift in the incremental haemodialysis prescription. Nephrol Dial Transplant 2017;32:182–90.
- [216] Casino FG, Marshall MR. Simple and accurate quantification of dialysis in acute renal failure patients during either urea non-steady state or treatment with irregular or continuous schedules. Nephrol Dial Transplant 2004;19:1454–66.
- [217] Vanholder R, Glorieux G, Eloot S. Once upon a time in dialysis: the last days of Kt/V? Kidney Int 2015;88:460–5.
- [218] Chan CT, Blankestijn PJ, Dember LM, Gallieni M, Harris DCH, Lok CE, et al. Dialysis initiation, modality choice, access, and prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2019;96:37–47.
- [219] Stachowska-Pietka J, Waniewski J, Lindholm B. Peritoneal dialysis: principles and peritoneal physiology. In: Turner N, Goldsmith D, Winearls C, Lamiere N, Himmelfarb J, Remuzzi G, editors. Oxford textbook of clinical nephrology. Oxford University Press; 2015.
- [220] Gura V, Rivara MB, Bieber S, Munshi R, Smith NC, Linke L, et al. A wearable artificial kidney for patients with end-stage renal disease. JCI. Insight 2016;1.
- [221] Salani M, Roy S, Fissell WHT. Innovations in wearable and implantable artificial kidneys. Am J Kidney Dis 2018;72:745–51.
- [222] Bazaev NA, Lindholm B. A mathematical model of extrarenal purification of human blood using a wearable artificial kidney based on peritoneal dialysis. Biomed Eng 2016;50:219–23.
- [223] Brunati CCM, Gervasi F, Casati C, Querques ML, Montoli A, Colussi G. Phosphate and calcium control in short frequent hemodialysis with the NxStage system one cycler: mass balance studies and comparison with standard thrice-weekly bicarbonate dialysis. Blood Purif 2018;45:334–42.
- [224] Leypoldt JK, Weinhandl ED, Collins AJ. Volume of urea cleared as a therapy dosing guide for more frequent hemodialysis. Hemodial Int 2019;23:42–9.
- [225] Michalec M, Fiedoruk-Pogrebniak M, Matuszkiewicz-Rowinska J, Tymecki L, Koncki R. Biomedical monitoring of phosphate removal by hemodialysis. J Pharm Biomed Anal 2016;126:9–13.
- [226] Pilt K, Arund J, Adoberg A, Leis L, Luman M, Fridolin I. Online urea concentration estimation from spent dialysate using optical sensor. In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterranean conference on medical and biological engineering and computing – MEDICON 2019. Cham: Springer International Publishing; 2020. p. 1459–64.
- [227] Britton NF, Waniewski J. One-dimensional theory of haemofilters. Math Med Biol 1987;4:59–68.
- [228] Werynski A, Malchesky PS, Lewandowski JJ, Waniewski J, Wojcicki J, Piatkiewicz W. Theoretical formulation of sieving coefficient evaluation for membrane plasma separation. Artif Organs 1985;9:250–4.
- [229] Patzer 2nd JF, Bane SE. Bound solute dialysis. ASAIO J 2003;49:271–81.
- [230] Magosso E, Ursino M, Coli L, Baraldi O, Bolondi L, Stefoni S. A modeling study of bilirubin kinetics during Molecular Adsorbent Recirculating System sessions. Artif Organs 2006;30:285–300.
- [231] Jung A, Korohoda P, Krisper P, Schneditz D. Relationship between kinetics of albumin-bound bilirubin and water-soluble urea in extracorporeal blood purification. Nephrol Dial Transplant 2012;27:1200–6.
- [232] Jung A, Korohoda P, Krisper P, Stadlbauer V, Stauber RE, Schneditz D. Bile acid kinetic modeling in end-stage liver support patients. Biocybern Biomed Eng 2020;40:764–73.
- [233] Werynski A, Nahorski Z, Angelin B, Berglund L, Eriksson M. Kinetic analysis of LDL apoB transport and metabolism in non-steady states. Control Cybern 2000;29:405–25.
- [234] Waniewski J, Prikrylova D. Immune response after plasmapheresis. Biocybern Biomed Eng 1992;11:61–74.
- [235] Waniewski J, Werynski A. Mathematical modeling of antigen and immune complex kinetics during extracorporeal removal of autoantibody. Int J Artif Organs 1991;14:186–8.
- [236] Werynski A, Waniewski J. Mathematical modeling in blood purification processes. Biocybern Biomed Eng 2002;22:69–84.
- [237] Flessner MF, Choi J, Credit K, Deverkadra R, Henderson K. Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin Cancer Res 2005;11:3117–25.
- [238] Stachowska-Pietka J, Waniewski J. Mathematical Models of Intraperitoneal Drug Delivery. In: Ceelen W, Levine E, editors. Intraperitoneal cancer therapy: Taylor & Francis Group; 2016. p. 153-69.
- [239] Wientjes MG, Badalament RA, Wang RC, Hassan F, Au JL. Penetration of mitomycin C in human bladder. Cancer Res 1993;53:3314–20.
- [240] Gupta E, Wientjes MG, Au JL. Penetration kinetics of 2’,3’- dideoxyinosine in dermis is described by the distributed model. Pharm Res 1995;12:108–12.
- [241] Flessner MF, Choi J, Vanpelt H, He Z, Credit K, Henegar J, et al. Correlating structure with solute and water transport in a chronic model of peritoneal inflammation. Am J Physiol Renal Physiol 2006;290:F232–40.
- [242] Canaud B, Collins A, Maddux F. The renal replacement therapy landscape in 2030: reducing the global cardiovascular burden in dialysis patients. Nephrol Dial Transplant 2020;35:ii51–7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d761f54-9374-4271-969d-ea13facb7467