Identyfikatory
Warianty tytułu
Zarys koncepcji oceny zrównoważonego rozwoju w ocenie technologii
Języki publikacji
Abstrakty
Technology assessment is being increasingly employed in both the public and private sectors. Technology assessment is defined as a process consisting of analyses of technological developments and their consequences as well as a debate on the basis of these analyses. Inquiries into technological developments ad their implications cannot be based on purely technical considerations but needs to adopt more complex perspectives. While traditional forms of technology assessment focused on individual technologies, current physical, technical and political realities necessitate a more systemic/holistic view, focusing on the long-term directions of social change and their impacts on a variety of sustainability. It has been acknowledged that technology and society coevolve. The paper provides information and knowledge on existing methods and their connections with the environmental, economic and social implications which are used for the assessment of sustainability of technology. This article seeks to provide some clarification by reflecting on the different approaches described in the literature as being forms of sustainability assessment in terms of their potential contributions to sustainability. Currently available methodologies for the assessment of the sustainability cover environmental parameters in a single integrated approach, like environmental impact assessment (EIA). Many of these are actually have been extended to incorporate social and economic considerations as well as environmental ones, reflecting a “triple bottom line” approach to sustainability. Each of the methods differs a set of generic criteria and indicators under the following broad categories: technological suitability, environmental considerations (in terms of resources and emissions, risks etc.), economic concerns, and social considerations. Application of LCA-based methodology to assess painting technology verifies the usability of the framework for sustainability assessment of technology. The conceptual framework for sustainability assessment of technology demonstrated through the paper verifies the application and usability of the methods used.
Ocena technologii jest coraz częściej stosowana zarówno w sektorze publicznym, jak i prywatnym. Ocena technologii jest definiowana jako proces składający się z analiz technologii i ich konsekwencje rozwoju i stosowania określonych technologii, procesy rozwoju technologii. Liczne zapytania o rozwój technologii nie mogą opierać się na względach czysto technicznych, ale wymagają bardziej złożonych perspektyw. Podczas gdy tradycyjne formy oceny technologii skupiają się na indywidualnych technologiach, obecne realia techniczne i polityczne wymagają bardziej systemowego/holistycznego spojrzenia, skupiającego się na długoterminowych kierunkach zmian społecznych i wewnętrznych zróżnicowaniach. Uznano, że technologia i społeczeństwo są współzależne. Artykuł dostarcza informacji i wiedzy na temat istniejących metod i ich współzależności, które są wykorzystywane do oceny stopnia zrównoważenia technologii. Odzwierciedlając różne podejścia opisane w literaturze, niniejszy artykuł ma na celu zarysowanie koncepcji metody oceny technologii pod kątem potencjalnego jej wpływu na zrównoważony rozwój. Obecnie dostępne metody oceny technologii uwzględniają parametry środowiskowe w jednolitym zintegrowanym podejściu, na przykład ocenę wpływu na środowisko (EIA). Wiele z nich zostało faktycznie poszerzonych o aspekty społeczne i ekonomiczne, a także środowiskowe, co odzwierciedla podejście zrównoważonego rozwoju, tj. „triple bottom line”. Każda z metod różni się zbiorem ogólnych kryteriów i wskaźników ujętych według różnych kategorii: przydatność technologiczna, względy środowiskowe (zasoby, emisja, zagrożenia itp.), aspekty ekonomiczne i względy społeczne. Zastosowanie metodyki opartej na cyklu życia produktu (LCA) do oceny technologii malowania ma na celu weryfikację przydatności tego narzędzia do oceny technologii w aspekcie zrównoważonego rozwoju.
Rocznik
Tom
Strony
173--212
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
autor
- Politechnika Warszawska Wydział Inżynierii Produkcji Instytut Organizacji Systemów Produkcyjnych
Bibliografia
- 1. Azapagic A., Perdan S. An integrated sustainability decision-support framework Part II: Problem analysis. “The International Journal of Sustainable Development & World Ecology”, Vol. 12, No. 2, 2005a, 2005b.
- 2. Azapagic A., Perdan S.: An integrated sustainability decision-support framework Part I: Problem structuring. “The International Journal of Sustainable Development & World Ecology”, Vol. 12, No. 2, 2005a.
- 3. Bakouros Y.: Technology evaluation, 2000, http://www.adi.pt/docs/innoregio_techn_evaluation.pdf.
- 4. Beder S.: The role of Technology in Sustainable Development, Technology and Society. Vol. 13(4), 1994, https://www.uow.edu.au/~sharonb/RoleTech.html.
- 5. Bertoni M., Hallstedt S., Ola, I.: A model-based approach for sustainability and value assessment in the aerospace value chain. “Advances in Mechanical Engineering”, Vol. 7, No. 6, 2015.
- 6. Bradbury J.A.: The Policy Implications of Differing Concepts of Risk. “Science, Technology & Human Values”, Vol. 14.
- 7. Chandak S.P.: Sustainablity Assessment of Technologies: Making the Right Choices. IETC-UNEP. 1st Stakeholder Consultative Workshop/Training Program of the Project on Converting Waste Agricultural Biomass to Fuel/Resources. MoneragBibliogr. 78 poz.ala District, Sri Lanka, 2009, http://www.unep.or.jp/ietc/WS/news-apr10/S2_3_DrSuryaPChandak.pdf.
- 8. Coates J.: Technology Assessment – A Tool Kit. “Chemtech”, 1976.
- 9. Coates V.T.: Technology and Public Policy: The Process of Technology Assessment in the Federal Government, Vol. I. Final Report. The George Washington University, Washington 1972.
- 10. Cruz-Castro L., Sanz-Menéndez C.: Politics and institutions: European parliamentary technology assessment. “Technological Forecasting and Social Change”, Vol. 72, No. 4, 2005.
- 11. Decker M.: Interdisciplinarity in Technology Assessment: Implementation and its Chances and Limits. Springer, Heidelberg-Berlin 2013.
- 12. Dorini G., Kapelan Z., Azapagic A.: Managing uncertainty in multiple-criteria decision making related to sustainability assessment. “Clean Technologies and Environmental Policy”, Vol. 13, No. 1, 2010.
- 13. Elighali L., Clift R., Sinclair P., Panoutsou C., Bauen A.: Developing a sustainability framework for the assessment of bioenergy systems. “Energy Policy”, Vol. 35, 2007.
- 14. Finkbeiner M., Schau E.M., Lehmann A., Traverso M.: Towards Life Cycle Sustainability Assessment. “Sustainability”, Vol. 2, 2010.
- 15. Freitas A.A., Magrini A.: Multi-criteria decision-making to support sustainable water management in mining complex in Brazil. “Journal of Cleaner Production”, Vol. 47, 2013.
- 16. Gaudreau K., Gibson R.: Illustrating integrated sustainability and resilience: a small-scale biodiesel project in Barbados. “Impact Assessment and Project Appraisal”, Vol. 28, No. 3, 2010.
- 17. Genus A., Coles A.: On constructive technology assessment and limitations on public participation in technology assessment. “Technology Analysis and Strategic Management”, Vol. 17, No. 4, 2005.
- 18. Gibson R.B.: Sustainability assessment: basic components of a practical approach. “Impact Assessment and Project Appraisal”, Vol. 24, No. 3, 2006.
- 19. Glasser J.H., Chrzanowski R.S.: Medical technology assessment: adequate questions, appropriate methods, valuable answers. Health Policy. “The Challenge of Technology Assessment in Health Policy”, Vol. 9, No. 3, 1988.
- 20. Goyal P., Rahman Z.: Corporate sustainability performance assessment: an analytical hierarchy process approach. “International Journal of Intercultural Information Management”, Vol. 4, No. 1, 2014.
- 21. Höjer M., Ahlroth S., Dreborg K.H., Ekvall T., Finnveden G., Hjelm O., Hochschorner E., Nilsson M., Palm V.: Scenarios in selected tools for environmental systems analysis. “Journal of Cleaner Production”, Vol. 16, 2008.
- 22. Hopwood B., Mellor M., O'Brien G.: Sustainable development: mapping different approaches. “Sustainable Development”, Vol. 13, No. 1, 2005.
- 23. Hui I.K., He L., Dang C.: Environmental impact assessment in an uncertain environment. “International Journal of Production Research”, Vol. 40, 2002.
- 24. Husereau D., Boucher M., Noorani H.: Priority setting for health technology assessment at CADTH. “International Journal of Technology Assessment in Health Care”, Vol. 26, No. 3, 2010.
- 25. Hwang C.L., Yoon K.: Multiple Attribute Decision Making: Method and Applications. Springer, New York 1981.
- 26. ISO (International Organization for Standardization).: ISO 14040: Environmental Management – Life Cycle Assessment – Principles and Framework. ISO, Genève 2006.
- 27. Jankauskiene D., Petronyte, G.: A model for HTA priority setting: experience in Lithuania. “International Journal of Technology Assessment in Health Care”, Vol. 29, No. 4, 2013.
- 28. Jeswani H.K., Azapagic A., Schepelmann P., Ritthoff M.: Options for broadening and deepening the LCA approaches. “Journal of Cleaner Production”, Vol. 18, 2010.
- 29. Jeswani H.K., Azapagic A.: Water footprint: methodologies and a case study for assessing the impacts of water use. “Journal of Cleaner Production”, Vol. 19, 2011.
- 30. Klein J.H., Cork R.B.: An approach to technical risk assessment. “International Journal of Project Management”, Vol. 16, No. 6, 1998.
- 31. Klemeš J.J., Cucek L., Kravanja Z.: Overview of environmental footprints, [in:] Klemeš, J.J.: Assessing and Measuring Environmental Impact and Sustainability. Butterworth Heinemann (Elsevier), Oxford, UK 2015.
- 32. Klöpffer W., Ciroth A.: Is LCC relevant in a sustainability assessment? “International Journal of Life Cycle Assessment”, Vol. 16, 2011.
- 33. Kluczek A.: Application of Multi-criteria Approach for Sustainability Assessment of Manufacturing Processes. ”Management and Production Engineering Review”, Vol. 7, No. 3, 2016.
- 34. Kluczek A.: Gładysz, B.: Analytical Hierarchy Process/Technique for Order Preference by Similarity to Ideal Solution-based approach to the generation of environmental improvement options for painting process. Results from an industrial case study. “Journal of Cleaner Production”, Vol. 101, 2015.
- 35. Koivisto R., Wessberg N., Eerola A., Ahlqvist T., Kivisaari S., et al.: Integrating future oriented technology analysis and risk assessment methodologies. “Technological Forecasting & Social Change”, Vol. 76, 2009.
- 36. Laubschagne C., Brent A.C.: Sustainable Project Life Cycle Management: the need to integrate life cycles in the manufacturing sector. “International Journal of Project Management”, Vol. 23, 2005.
- 37. Lawrence D.P.: Integrating Sustainability and Environmental Impact Assessment. “Environmental Management”, Vol. 21, No. 1, 1997.
- 38. Leach M., Scoones I., Stirling, A.: Pathways to sustainability: An overview of the STEPS Centre approach. STEPS Approach Paper. STEPS Centre, Brighton 2007.
- 39. Li T., Roskilly T., Wang Y.: A Life Cycle Approach to Sustainability Assessment on Community Energy Projects in the UK. 2016 ACEEE Summer Study on Energy Efficiency in Buildings, California 2016, http://aceee.org/files/proceedings/2016/data/papers/11_777.pdf.
- 40. Mobinizadeh M., Raeissi P., Nasiripour A.A., Tabibi A.O.S.: J. The health systems' priority setting criteria for selecting health technologies: A systematic review of the current evidence. “Medical Journal of the Islamic Republic of Iran”, Vol. 30, 2016.
- 41. Mundy J.: The Green Guide Explained. BRE Centre for Sustainable Products, 2015, http://www.bre.co.uk/filelibrary/greenguide/PDF/The-Green-Guide-Explained_March2015.pdf.
- 42. Nazarko Ł.: Technology assessment in construction sector as a Strategy towards Sustainability. “Procedia Engineering”, Vol. 122, 2015.
- 43. Neumann P.J.: Lessons for Health Technology Assessment: It Is Not Only about the Evidence. “International Society for Pharmacoeconomics and Outcomes Research (ISPOR)”, Vol. 12, No. 2, 2009.
- 44. Noorani H.Z., Husereau D.R., Boudreau R., Skidmore B.: Priority setting for health technology assessments: a systematic review of current practical approaches. “International Journal of Technology Assessment in Health Care”, Vol. 23, 2007.
- 45. Norman J.V., Paschen H.: Parliaments and Technology: The Development of Technology Assessment in Europe. SUNY Press, New York 2000.
- 46. Novaes H.M.D., de Soárez P.C.: Health technology assessment (HTA) organizations: dimensions of the institutional and political framework. “Cadernos de Saúde Pública”, Vol. 32, No. 2, 2016.
- 47. OTA (Office of Technology Assessment): First report on the Prospective Payment Assessment Commission (ProPAC). Washington 1985.
- 48. OTA (Office of Technology Assessment): Technology Assessment in Business and Government. Summary and analysis. Congress of the States, Washington, D.C. 1977.
- 49. Oteng-Seifah S.A.E., Adjei-Kumi T.A.: Review of Urban Sustainability Assessment Methodologies. “International Conference on Whole Life Urban Sustainability and its Assessment”, [in:] Horner M., Hardcastle C., Price A., Bebbington J. (eds.), Glasgow 2007.
- 50. Paschen H., Smith R.: Assessing Technology Assessment Institutions. OECD Symposium TA, Directorate for Science. “Technology and Industry, OECD DST/SPR 89.20, Vienna 1989.
- 51. Pinter L., Hardib P., Martinuzzic A., Halla J.: Bellagio STAMP.: Principles for sustainability assessment and measurement. “Ecological Indicators”, Vol. 17, 2012.
- 52. Polasky S., Carpenter S.R., Folke C., Keeler B.: Decision-making under great uncertainty: environmental management in an era of global change. “Trends in Ecology & Evolution”, Vol. 26, No. 8, 2011.
- 53. Pons O., de al Fluente A., Aguado A.: The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications. “Sustainability”, No. 8, 2016.
- 54. Pope J., Annandale D., Morriosn-Saunders A.: Conceptualizing sustainability assessment. “Environemntal Impact Assessment Review“, Vol. 24, 2004.
- 55. Rączka J.: The cost-effectiveness analysis – a superior alternative to the cost-benefit analysis of environmental infrastructure investments. Proceedings of the Fifth European Conference on Evaluation of the Structural Funds “Challenges for Evaluation in an Enlarged Europe”. Budapest 2003.
- 56. Regulation of the Minister of Environment Dated 22 April 2011 on emission standards for installations. “Journal of Law”, No. 95, Item 558, Warsaw 2011.
- 57. Rogowski W.: Account of Investment Efficiency. Kluwer, Cracow 2008 (in polish).
- 58. Russel A.W., Vanclay F.M., Aslin H.J.: Technology Assessment in Social Context: The case for a new framework for assessing and shaping technological developments. “Impact Assessment and Project Appraisal”, Vol. 28, No. 2, 2010.
- 59. Saaty T.L.: Analytic Hierarchy Process. McGraw-Hill, New York 1980.
- 60. Saaty T.L.: How to make a decision: The analytic hierarchy process. “European Journal of Operational Research”, Vol. 48, No. 1, 1991.
- 61. Sahely H.R., Kennedy C.A., Adams B.J.: Developing sustainability criteria for urban infrastructure systems. “Canadian Journal of Civil Engineering”, Vol. 32, 2005.
- 62. Sala S., Ciuffo B., Nijkamp P.: A systemic framework for sustainability assessment. Ecological Economics”, Vol. 119, 2015.
- 63. Sala S., Farioli F., Zamagni A.: Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment (part I). “International Journal of Life Cycle Assessment”, Vol. 18, 2013.
- 64. Santoyo-Castelazo E., Azapagic A.: Sustainability assessment of energy systems: integrating environmental, economic and social aspects. “Journal of Cleaner Production”, Vol. 80, 2014.
- 65. Šaparauskas J.: The main aspects of sustainability evaluation in construction. Proceedings of the 9th International Conference „Modern Building Materials, Structures and Techniques”, 2007
- 66. Schot J., Rip A.: The past and future of constructive technology assessment. “Technological Forecasting and Social Change”, Vol. 54, No. 2/3, 1996.
- 67. Sendra C., Gabarrell X., Vicent T.: Material flow analysis adapted to an industrial area. “Journal of Cleaner Production”, Vol. 15, 2007.
- 68. Skowrońska M., Filipek T.: Life cycle assessment of fertilizers: a review. “International Agrophysics”, Vol. 28, 2014.
- 69. Smeets E., Junginger M., Faaij A., Walter A., Dolzan P., Turkenburg W.: The sustainability of Brazilian ethanol – An assessment of the possibilities of certified production. “Biomass and Bioenergy”, Vol. 32, No. 8, 2008.
- 70. Specchia M.L., Favale M., Di Nardo F., Rotundi G., Favaretti C., et al.: How to choose health technologies to be assessed by HTA? A review of criteria for priority setting. “Epidemiology Preview”, Vol. 39, No. 4, Suppl. 1, 2015.
- 71. Tahir A.C., Darton R.C.: Sustainability indicators: using the Process Analysis Method to select indicators for assessing production operations. “Chemical Engineering Transactions”, Vol. 21, 2010a.
- 72. Tahir A.C., Darton R.C.: The Process Analysis Method of selecting indicators to quantify the sustainability performance of a business operation. “Journal of Cleaner Production”, Vol. 18, No.16, 2010b.
- 73. Thompson C.: as quoted in Government Technology’s Public CIO magazine, Phoenix, Arizona 2008.
- 74. UN Commission on Sustainable Development (UNCSD).: Indicators of sustainable development: framework and methodologies, 2001, http://www.un.org/esa/sustdev/publications/indisd-mg2001.pdf.
- 75. UNEP (United Nations Environment Programme): Application of the sustainability assessment of technologies methodology: guidance manual. “Environmental Technology Assessment”, Osaka 2012.
- 76. Von Shomber R.: Prospects for Technology Assessment in a framework of responsible research and innovation, [in:] Dusseldorp M., Beecroft R. (eds.): Technikfolgen abschätzen lehren: Bildungspotenziale transdisziplinärer Methoden. VS Verlag für Sozialwissenschaften, Wiesbaden 2012.
- 77. WCED (World Commission on Environment and Development): Our Common Future. Oxford University Press, Oxford 1987.
- 78. Wu R., Yang D., Chen J.: Social Life Cycle Assessment Revisited. “Sustainability”, Vol. 6, 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d72dab1-c15f-4c53-9f4d-968d8cac5588