Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The AlMg10 aluminum alloy reinforced with SiC particles was subjected to friction stir processing (FSP). The composite was made by mechanical mixing and gravity casting. The mass fraction of SiC particles in the composite was about 10%. Evaluation of the effects of FSP treatment was performed by means of light microscopy, scanning electron microscopy, EDS and hardness measurement. It was found that the inhomogeneous distribution of SiC particles and their agglomeration, which were observable in the cast composite, were completely eliminated after FSP modification. The treatment was also accompanied by homogenisation of the material in the mixing zone as well as fragmentation of both the matrix grain of the composite and SiC particles. In the case of SiC particles, a change in their shape was also observed. In the as-cast composite, particles with dimensions from 30 to 60 μm and a sharp-edged polyhedral shape prevailed, while in the material subjected to friction treatment, particles with dimensions from 20 to 40 μm and a more equiangular shape prevailed. Pores and other material discontinuities occurring frequently in the as-cast composite were completely eliminated after friction modification. The recorded changes in the microstructure of the material were accompanied by an increase in the hardness of the composite by nearly 35%. The conducted investigations have shown that FSP modification of the AlMg10/SiC composite made by the casting method leads to favorable microstructural changes in the surface layer and may be an alternative solution to other methods and technologies used in surface engineering.
Rocznik
Tom
Strony
185--192
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
- Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Institute of Materials Engineering, 19 Armii Krajowej St., 42-200 Częstochowa, Poland
- iwaszko@wip.pcz.pl
autor
- Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Welding, 21 Armii Krajowej St., 42-200 Częstochowa, Poland
Bibliografia
- [1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith, and C.J. Dawes, “Friction stir butt welding”. International Patent No. PCT/GB92/02203, GB Patent Application No. 9125978.8 (1991) and U.S. Patent No. 5460317, (1995).
- [2] R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, “Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel”, Sci. Technol. Weld. Joi. 11 (5), 526‒537 (2006). DOI:10.1179/174329306X107692.
- [3] S.A. Alidokht, A. Abdollah-Zadeh, S. Soleymani, T. Saeid, and H. Assadi, “Evaluation of microstructure and wear behavior of friction stir processed cast aluminum alloy”, Mater. Charact. 63, 90–97 (2012). DOI:10.1016/j.matchar.2011.11.007.
- [4] D. Kocańda, V. Hutsaylyuk, T. Ślęzak, J. Torzewski, H. Nykyforchyn, and V. Kyryliv, “Fatigue crack growth rates of S235 and S355 steels after friction stir processing”, Mater. Sci. Forum 726, 203‒210 (2012). DOI:10.4028/www.scientific.net/MSF.726.203.
- [5] M.S. Węglowski, S. Dymek, and C.B. Hamilton, “Experimental investigation and modelling of friction stir processing of cast aluminium alloy AlSi9Mg”, Bull. Pol. Ac.: Tech. 61/4, 893‒904 (2013). DOI:10.2478/bpasts-2013‒0096.
- [6] F. García-Vázquez, B. Vargas-Arista, R. Muñiz, J.C. Ortiz, H.H. García, and J. Acevedo, “The role of friction stir processing (FSP) parameters on TiC reinforced surface Al7075-T651 Aluminum Alloy”, Soldagem & Inspeção 21(4), 508‒516 (2016). DOI:http://dx.doi.org/10.1590/0104‒9224/SI2104.10.
- [7] K.O. Sanusi and E.T. Akinlabi, “Friction-stir processing of a composite aluminium alloy (AA 1050) reinforced with titanium carbide powder”, Materiali in tehnologije / Mater. Technol. 51/3, 427–435 (2017). DOI:10.17222/mit.2016.021.
- [8] M. Sharifitabar, A. Sarani, S. Khorshahian, and M. Shafiee Afarani, “Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route”, Mater. Des. 32, 4164‒4172 (2011). DOI:10.1016/j.matdes.2011.04.048.
- [9] M. Barmouz, M. Kazem Besharati Givi, and J. Seyfi, “On the role of processing parameters in production Cu/SiC metal matrix composities via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior”, Mater. Charact. 62, 108‒117 (2011). DOI:10.1016/j.matchar.2010.11.005
- [10] J. Iwaszko, K. Kudła, and K. Fila, “Technological aspects of friction stir processing of AlZn5.5MgCu aluminum alloy”, Bull. Pol. Ac.: Tech. 66/5, 713‒719 (2018). DOI:10.24425/12427.
- [11] J. Iwaszko, K. Kudła, K. Fila, and R. Caban, “Application of FSP technology in formation process of composite microstructure in AlZn5.5MgCu aluminum alloy surface layer reinforced with SiC particles”, Compos. Theory Practice 17/1 51‒56 (2017).
- [12] J. Iwaszko and K. Kudła, “Sposób modyfikowania warstwy wierzchniej materiałów metalicznych, Polish Patent PL 228010 (2018).
- [13] Y. Huang, T. Wang, W. Guo, L. Wan, and S. Lv, “Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by Direct Friction Stir Processing”, Mater. Des. 59, 274‒278 (2014). http://dx.doi.org/10.1016/j.matdes.2014.02.067.
- [14] P. Kurtyka, N. Rylko, T. Tokarski, A. Wójcicka, and A. Pietras, “Cast aluminium matrix composites modified with using FSP process – Changing of the structure and mechanical properties”, Compos. Struct. 133, 959–967 (2015). http://dx.doi.org/10.1016/j.compstruct.2015.07.122.
- [15] R. Bauri, D. Yadav, and G. Suhas, “Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite”, Mater. Sci. Eng. A 528, 4732–4739 (2011). DOI:10.1016/j.msea.2011.02.085.
- [16] A. Tewari, J.E. Spowart, A.M. Gokhale, R.S. Mishra, and D.B. Miracle, “Characterization of the effects of friction stir processing on microstructural changes in DRA composites”, Mater. Sci. Eng. A 428, 80–90 (2006). https://doi.org/10.1016/j.msea.2006.04.106.
- [17] M. Amirizad, A.H. Kokabi, M. Abbasi Gharacheh, R. Sarrafi, B. Shalchi, and M. Azizieh, “Evaluation of microstructure and mechanical properties in friction stir welded A356+15%SiCp cast composite”, Mater. Lett. 60, 565–568 (2006). DOI:10.1016/j.matlet.2005.09.035.
- [18] A. Zyska, “Struktura odlewów kompozytowych stop AlMg10 – cząstki SiC”, Solidification of Metals and Alloys 1/40, 255‒262 (1999).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d71ad0f-1364-4565-8bea-435b91ae4258