PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applications of UAVs in mine industry: a scoping review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, a variety of technologies have improved mining operations. One of them is the Unmanned Aerial Vehicles (UAVs), the emerging technology that has been changing the mining process, boosting mining safety and productivity. The main purpose of this paper is to review the applications of UAVs in the mining industry based on the results of 113 research papers over the past twelve years, from 2010 to May 2022. The potential applications of UAVs in the mining industry are broad. Based on the paper identified, eight categories are used to classify UAV applications in the mining sector. The reviewed literature revealed that UAVs are an excellent tool for multitasking at any stage of a mining project and in any type of mine. The findings of this study may serve as some guidelines for developing the necessary requirements for the use of UAV technology in mine sites.
Rocznik
Strony
128--146
Opis fizyczny
Bibliogr. 132 poz.
Twórcy
  • Thuyloi University, Vietnam
  • Hanoi University of Natural Resources and Environment, Vietnam
Bibliografia
  • [1] Rathore I, Kumar NP. Unlocking the potentiality of uavs in mining industry and its implications. Int J Innov Res Sci Eng Technol 2015;4(3):852-5.
  • [2] Dastgheibifard S, Asnafi M. A review on potential applications of unmanned aerial vehicle for construction industry. Sustain Struct Mater 2018;1(2):44-53.
  • [3] Daud SMSM, Yusof MYPM, Heo CC, Khoo LS, Singh MKCS, Mahmood MS, et al. Applications of drone in disaster management: a scoping review. Sci Justice 2022; 62(1):30-42.
  • [4] Barnas AF, Darby BJ, Vandeberg GS, Rockwell RF, Ellis-Felege SN. A comparison of drone imagery and ground- based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Perouse Bay. PLoS One 2019;14(8): e0217049.
  • [5] Bendig J, Bolten A, Bennert S, Broscheit J, Eichfuss S, Bareth G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Rem Sens 2014;6(11):10395-412.
  • [6] Díaz-Varela RA, Rosa RDL, Leon L, Zarco-Tejada PJ. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials. Rem Sens 2015;7(4):4213-32.
  • [7] Van Tilburg C. First report of using portable unmanned aircraft systems (drones) for search and rescue. Wilderness Environ Med 2017;28(2):116-8.
  • [8] Ren H, Zhao Y, Xiao W, Hu Z. A review of UAV monitoring in mining areas: current status and future perspectives. Int J Coal Sci Technol 2019;6(3):320-33.
  • [9] Outay F, Mengash HA, Adnan M. Applications of un- manned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: recent advances and challenges. Transport Res Pol Pract 2020;141:116-29.
  • [10] Nawaz H, Ali HM, Massan S. Applications of unmanned aerial vehicles: a review. 3C Tecnología. Glosas de innovación aplicadas a la pyme; 2019. p. 85-105. Special Issue.
  • [11] Singhal G, Bansod B, Mathew L. Unmanned aerial vehicle classification, applications and challenges: a review. 2018.
  • [12] Kim J, Kim S, Ju C, Son HI. Unmanned aerial vehicles in agriculture: a review of perspective of platform, control, and applications. IEEE Access 2019;7:105100-15.
  • [13] Shakhatreh H, Sawalmeh AH, AI-Fuqaha A, Dou Z, Almaita E, Khalil I, et al. Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 2019;7:48572-634.
  • [14] Park S, Choi Y. Applications of unmanned aerial vehicles in mining from exploration to reclamation: a review. Minerals 2020;10(8):663.
  • [15] Shahmoradi J, Talebi E, Roghanchi P, Hassanalian M. A comprehensive review of applications of drone technology in the mining industry. Drones 2020;4(3):34.
  • [16] Camara T, Leal RS, Peroni R, Capponi L. Controlling dilution and mine planning. In: Apcom symposium applications of computers and operations research in the mineral industry; 2013.
  • [17] Lee S, Choi Y. On-site demonstration of topographic surveying techniques at open-pit mines using a fixed-wing unmanned aerial vehicle (drone). Tunnel Undergr Space 2015;25(6):527-33.
  • [18] Nguyen NV. Building DEM for deep open-pit coal mines using DJI Inspire 2. J Min Earth Sci 2020;61(1):1-10.
  • [19] Nghia NV. Building DEM for deep open-pit coal mines using DJI Inspire 2. J Min Earth Sci 2020;61(1):1-10.
  • [20] Lee S, Choi Y. Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. Geosyst Eng 2016;19(4):197-204.
  • [21] Gil M, Frąckiewicz P. Optimization of the location of observation network points in open-pit mining's. GIS Forum; 2019.
  • [22] Xiang J, Chen J, Sofia G, Tarolli P. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environ Earth Sci 2018;77(6):1-18.
  • [23] Beretta F, Shibata H, Cordova R, Peroni RDL, Azambuja J, Costa JFCL. Topographic modelling using UAVs compared with traditional survey methods in mining. REMInt Eng J 2018;71:463-70.
  • [24] Nguyen LQ. Accuracy assessment of open-pit mine's digital surface models generated using photos captured by Unmanned Aerial Vehicles in the post-processing kinematic mode. J Min Earth Sci 2021;62(4):38-47.
  • [25] Chirico PG, DeWitt JD. Mapping informal small-scale mining features in a data-sparse tropical environment with a small UAS. J Unmanned Veh Syst 2017;5(3):69-91.
  • [26] Nguyen QL, Ha LTT, Son TS. UAV Photogrammetry-Based For Open Pit Coal Mine Large Scale Mapping, Case Studies In Cam Pha City. Vietnam Sustain Develop Mount Territ 2020;12(4):501-9.
  • [27] González-Aguilera D. 3D Modelling and accuracy assessment of granite quarry using unmmanned aerial vehicle. 2012.
  • [28] Moudrý V, Urban R, Stroner M, Komarek J, Broucek J, Prosek J. Comparison of a commercial and homeassembled fixed-wing UAV for terrain mapping of a postmining site under leaf-off conditions. Int J Rem Sens 2019;40(2):555-72.
  • [29] Battulwar R, Winkelmaier G, Valencia J, Naghadehi MZ, Peik B, Abbasi B, et al. A practical methodology for generating high-resolution 3D models of open-pit slopes using UAVs: flight path planning and optimization. Rem Sens 2020;12(14):2283.
  • [30] Tong X, Liu X, Chen P, Liu S, Luan K, Li L, et al. Integration of UAV-based photogrammetry and terrestrial laser scan- ning for the three-dimensional mapping and monitoring of open-pit mine areas. Rem Sens 2015;7(6):6635-62.
  • [31] Vassena G, Clerici A. Open pit mine 3D mapping by tls and digital photogrammetry: 3D model update thanks to a slam based approach. Int Arch Photogram Rem Sens Spatial Inf Sci 2018;42(2):1145-8.
  • [32] Forlani G, Asta ED, Diotri F, Cella UMD, Roncella R, Santise M. Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Rem Sens 2018;10(2):311.
  • [33] Long NQ, Goyal R, Luyen BK, Cuong C, Canh LV, Minh NQ, et al. Optimal choice of the number of ground control points for developing precise DSM using light-weight UAV in small and medium-sized open-pit mine. Arch Min Sci 2021;66(3).
  • [34] Krsak B, Blistan P, Paulikova A, Puskarova P, Kavanic L, Palkova J, et al. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement 2016;91:276-87.
  • [35] Tien Bui D, Long NQ, Xuan NB, Viet NN, Chung PV, Canh LV, et al. Lightweight unmanned aerial vehicle and structure-from-motion photogrammetry for generating digital surface model for open-pit coal mine area and its accuracy assessment. In: International conference on geospatial technologies and earth resources. Springer; 2017.
  • [36] Park HJ,Turner R, Lee DR, Lee JO. 3D modelling of coal stockpiles using UAV data in an open cut mine environment. In: Proceedings of the 16th international congress for mine surveying ISM; 2016.
  • [37] Wang Q, Wu L, Chen S, Shu D, Xu Z, Li F, et al. Accuracy evaluation of 3D geometry from low-attitude uav images: a case study at Zijin Mine. Int Arch Photogram Rem Sens Spatial Inf Sci 2014;4.
  • [38] Shahbazi M, Sohn G, Theau J, Menard P. UAV-BASED point cloud generation for open-pit mine modelling. In: International archives of the photogrammetry. vol. 40. Remote Sensing & Spatial Information Sciences; 2015.
  • [39] Kang S, Lee GJ, Noh J, Jang HD, Kim SM, Ko CS. 3- dimensional modeling and mining analysis for open-pit limestone mine stope using a rotary-wing unmanned aerial vehicle. J Eng Geol 2018;28:701-14.
  • [40] Bui XN, Changwoo L, Long NQ, Ahmad A, Cuong CX, Nghia NV, et al. Use of unmanned aerial vehicles for 3D topographic mapping and monitoring the air quality of open-pit mines. Inzynieria Mineralna 2019:21.
  • [41] Filipova S, Filipov D, Raeva P. Creating 3D model of an open pit quarry by UAV imaging and analysis in GIS. In: International conference on cartography and GIS; 2016.
  • [42] Tscharf A, Rumpler M, Fraundorfer F, Mayer G, Bischof H. On the use of UAVs in mining and archaeology-geo-accurate 3d reconstructions using various platforms and terrestrial views. ISPRS Ann Photogr Rem Sens Spat Info Sci 2015;2(W1):15-22.
  • [43] Ulusoy I, Sen E, Tuncer A, Sonmez H, Bayhan H. 3D Multiview stereo modelling of an open mine pit using a light-weight UAV. Turk Jeol Bul 2017;60(2):223-42.
  • [44] Le Van C, Cuong C, Long NQ, Ha LTT, Anh TT, Bui XN, et al. Experimental investigation on the performance of DJI Phantom 4 RTK in the PPK mode for 3D mapping openpit mines. Inzyn Miner 2020;1(2):65-74.
  • [45] Leo Stalin J, Gnanaprakasam R. Application of unmanned aerial vehicle for mapping and modeling of Indian mines. J Indian Soc Rem Sens 2020;48(6):841-52.
  • [46] Salvini R, Mastrorocco G, Seddaiu M, Rossi D, Vanneschi C. The use of an unmanned aerial vehicle for fracture mapping within a marble quarry (Carrara, Italy): photogrammetry and discrete fracture network modelling. Geomatics,. Nat Hazards Risk 2017;8(1):34-52.
  • [47] Katuruza M, Birch C. The use of unmanned aircraft system technology for highwall mapping at Isibonelo Colliery, South Africa. J S Afr Inst Min Metall 2019;119(3):291-5.
  • [48] Rossi P, Mancini F, Dubbini M, Mazzone F, Capra A. Combining nadir and oblique UAV imagery to reconstruct quarry topography: methodology and feasibility analysis. Eur J Rem Sens 2017;50(1):211-21.
  • [49] Lee S, Choi Y. Topographic survey at small-scale open-pit mines using a popular rotary-wing unmanned aerial vehicle (drone). Tunnel Undergr Space 2015;25(5):462-9.
  • [50] Ge L, Li X, Ng AH-M. UAV for mining applications: a case study at an open-cut mine and a longwall mine in New South Wales, Australia. In: 2016 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE; 2016.
  • [51] Russell EA, MacLaughlin M, Turner R. UAV-based geotechnical modeling and mapping of an inaccessible underground site. In: 52nd US rock mechanics/geomechanics symposium. OnePetro; 2018.
  • [52] Papachristos C, Khattak S, Mascarich F, Alexis K. Autonomous navigation and mapping in underground mines using aerial robots. In: 2019 IEEE aerospace conference. IEEE; 2019.
  • [53] Turner R, Bhagwat NP, Galayda LJ, Knoll CS, Russell EA, MacLaughlin MM. Geotechnical characterization of underground mine excavations from UAV-captured photogrammetric & thermal imagery. In: 52nd US rock mechanics/ geomechanics symposium. OnePetro; 2018.
  • [54] Turner RM, MacLaughlin MM, Iverson SR. Identifying and mapping potentially adverse discontinuities in underground excavations using thermal and multispectral UAV imagery. Eng Geol 2020;266:105470.
  • [55] Suh J, Choi Y. Mapping hazardous mining-induced sink-hole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environ Earth Sci 2017;76(4):1-12.
  • [56] Dai H, Xu J. Application of UAV photogrammetry on ecological restoration of abandoned open-pit mines, northern anhui province, China. Nat Environ Pollut Technol 2022;21(1):193-9.
  • [57] Molnar A, Domozi Z. Volume analysis of surface formations on the basis of aerial photographs taken by drones. Int J Signal Proc Image Proc Patt Recog 2016;1:152-9.
  • [58] Motyka Z. Systems for spatial and physico-chemical parameters mapping of anthropogenic landscape forms and plants formations in mining areas with the use of photogrammetry and remote laser sensing from low height. Czasopismo Inżynierii Lądowej, Środowiska i Architektury; 2017.
  • [59] Yucel MA, Turan RY. Areal change detection and 3D modeling of mine lakes using high-resolution unmanned aerial vehicle images. Arabian J Sci Eng 2016;41(12): 4867-78.
  • [60] Martin PG, Payton OD, Fardoulis JS, Richards DA, Scott TB. The use of unmanned aerial systems for the mapping of legacy uranium mines. J Environ Radioact 2015;143:135-40.
  • [61] Neumann PP, Bennetts VH, Lilienthal AJ, Bartholmai M, Schiller JH. Gas source localization with a microdrone using bio-inspired and particle filter-based algorithms. Adv Robot 2013;27(9):725-38.
  • [62] Medinac F, Bamford T, Esmaeili K, Schoellig AP. Pre-and post-blast rock block size analysis using uav-lidar based data and discrete fracture network. In: 2nd international discrete fracture network engineering conference. OnePetro; 2018.
  • [63] Bamford T, Medinac F, Esmaeili K. Continuous monitoring and improvement of the blasting process in open pit mines using unmanned aerial vehicle techniques. Rem Sens 2020; 12(17):2801.
  • [64] Kanchibotla SS, Valery W, Morrell S. Modelling fines in blast fragmentation and its impact on crushing and grinding. In: Explo ‘99-A conference on rock breaking. Kalgoorlie, Australia: The Australasian Institute of Mining and Metallurgy; 1999.
  • [65] Bamford T, Esmaeili K, Schoellig AP. A real-time analysis of post-blast rock fragmentation using UAV technology. Int J Min Reclamat Environ 2017;31(6):439-56.
  • [66] Bamford T, Esmaeili K, Schoellig AP. A real-time analysis of rock fragmentation using UAV technology. arXiv; 2016. preprint arXiv:1607.04243.
  • [67] Bamford T, Esmaeili K, Schoellig AP. Aerial rock fragmentation analysis in low-light condition using UAV technology. 2017. arXiv preprint arXiv:1708.06343.
  • [68] Valencia J, Battulwar R, Zare Naghadehi M, Sattarvand J. Enhancement of explosive energy distribution using UAVs and machine learning. In: Mining goes digital. CRC Press; 2019. p. 671-7.
  • [69] Alvarado M, Gonzalez F, Fletcher A, Doshi A. Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors 2015;15(8):19667-87.
  • [70] Zheng J, Yao W, Lin X, Ma B, Bai L. An accurate digital subsidence model for deformation detection of coal mining areas using a UAVbased LiDAR. Rem Sens 2022;14(2): 421.
  • [71] Yavuz G. Açõk maden isletmelerinde insansõz hava aracõ (IHA) uygulamalarõ. Turk Jeol Bul 2019;62(1):99-112.
  • [72] Dawei Z, Lizhuang Q, Demin Z, Baohui Z, Lianglin G. Unmanned aerial vehicle (UAV) photogrammetry technology for dynamic mining subsidence monitoring and parameter inversion: a case study in China. IEEE Access 2020;8:16372-86.
  • [73] Ignjatovic Stupar D, Roser J, Vulic M. Investigation of unmanned aerial vehicles-based photogrammetry for large mine subsidence monitoring. Minerals 2020;10(2):196.
  • [74] Pal A, Roser J, Vulic M. Surface subsidence prognosis above an underground longwall excavation and based on 3D point cloud analysis. Minerals 2020;10(1):82.
  • [75] Jozkow G, Walicka A, Borkowski A. Monitoring terrain deformations caused by underground mining using uav data. Int Arch Photogram Rem Sens Spatial Inf Sci 2021;43: 737-44.
  • [76] Puniach E, Gruszczynski W, Cwiakata P, Matwij W. Application of UAV-based orthomosaics for determination of horizontal displacement caused by underground mining. ISPRS J Photogrammetry Remote Sens 2021;174:282-303.
  • [77] Cwiąkała P, Gruszczynski W, Stoch T, Puniach E, Mrochen D, Matwij W, et al. UAV applications for determination of land deformations caused by underground mining. Rem Sens 2020;12(11):1733.
  • [78] Vrublova D, Kapica R, Jirankova E, Adam S. Documentation of landslides and inaccessible parts of a mine using an unmanned UAV system and methods of digital terrestrial photogrammetry. GeoSci Eng 2015;61(3):8.
  • [79] Liu Z, Mei G, Sun Y. Investigating deformation patterns of a mining-induced landslide using multisource remote sensing: the songmugou landslide in Shanxi Province, China. Bull Eng Geol Environ 2022;81(5):1-16.
  • [80] Zhang F, Yang T, Li L, Bu J, Wang T, Xiao P. Assessment of the rock slope stability of fushun west open-pit mine. Arabian J Geosci 2021;14(15):1-20.
  • [81] Vemulapalli SC, Mesapam S. Slope stability analysis for mine hazard assessment using UAV. J Indian Soc Rem Sens 2021;49(7):1483-91.
  • [82] McLeod T, Samson C, Labrie M, Shehata K, Mah J, Lai P, et al. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open- pit mine. Geomatica 2013;67(3):173-80.
  • [83] Nagendran SK, Ismail MAM. Application of UAV photogrammetry for quarry monitoring. Warta Geolog 2020;46(2): 76-81.
  • [84] Buill F, Nunez-Andres MA, Lantada N, Prades A. Comparison of photogrammetric techniques for rockfalls monitoring. In: IOP conf. Ser. Earth environ. Sci. vol. 44; 2016. p. 42023.
  • [85] Salvini R, Mastrorocco G, Esposito G, Bartolo SD, Coggan J, Vanneschi C. Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy). Nat Hazard Earth Sys 2018;18(1):1-5.
  • [86] Stead D, Donati D, Wolter A, Sturzenegger M. Application of remote sensing to the investigation of rock slopes: experience gained and lessons learned. ISPRS Int J Geo-Inf 2019;8(7):296.
  • [87] Anua NEQM, Zabidi H, Juhari AS, Yaacob S, Suri S. Slope stability assessment in opencast quarryean UAV approach. Warta Geolog 2020;46(2):94-8.
  • [88] Hartwig ME, Moreira CA. Integration of multisources data for quarry slope stability assessment in the Itaoca district (Southeastern Brazil). An Acad Bras Ciencias 2021;93.
  • [89] Beretta F. Rodrigues AL, Peroni RDL, Xosta JFCL. Using UAV for automatic lithological classification of open pit mining front. REM-Int Eng J 2019;72:17-23.
  • [90] Viana C, Garcia G, Grohmann C, Albuquerque R, Monticelli J, Cacciari P, et al. Slope stability assessment based on a digital outcrop model: a case-study at Jardim Garcia quarry. In: 14th ISRM Congress. OnePetro; 2019.
  • [91] Blistan P, Kavanic L, Zeliznakova V, Palkova J. Using UAV photogrammetry to document rock outcrops. Acta Montan Slovaca 2016;21(2).
  • [92] Bar N, Borgatti L, Donati D, Francioni M, Salvini R, Ghirotti M. Classification of natural and engineered rock slopes using UAV photogrammetry for assessing stability. In: IOP conference series: earth and environmental science. IOP Publishing; 2021.
  • [93] He X, Y X, Luo Z, Guan T. Application of unmanned aerial vehicle (UAV) thermal infrared remote sensing to identify coal fires in the Huojitu coal mine in Shenmu city, China, vol. 10. Scientific Reports; 2020.
  • [94] Vasterling M, Schloemer S, Fischer C, Ehrler C. Thermal imaging of subsurface coal fires by means of an unmanned aerial vehicle (UAV) in the autonomous province Xinjiang, PRC. In: EGU general assembly conference abstracts; 2010.
  • [95] Y-j Wang, Tian F, Huang Y, Wang J, Wei CJ. Monitoring coal fires in Datong coalfield using multi-source remote sensing data. Trans Nonferrous Metals Soc China 2015; 25(10):3421-8.
  • [96] Yuan G, Wang Y, Zhao F, Wang T, Zhang L, Hao M, et al. Accuracy assessment and scale effect investigation of UAV thermography for underground coal fire surface temperature monitoring. Int J Appl Earth Obs Geoinf 2021;102: 102426.
  • [97] Shao Z, Li Y, Deng R, Wang D, Zhong X. Three-dimensional-imaging thermal surfaces of coal fires based on UAV thermal infrared data. Int J Rem Sens 2021;42(2):672-92.
  • [98] Malos JT, Beamish BB, Munday L, Reid PB, James C. Remote monitoring of subsurface heatings in opencut coal mines. 2013.
  • [99] Li F, Yang W, Liu X, Sun G, Liu J. Using high-resolution uav-borne thermal infrared imagery to detect coal fires in majiliang mine, datong coalfield, northern China. Rem Sens Lett 2018;9(1).
  • [100] Carabassa V, Pau M, Alcaniz JM, Padro JC. Soil erosion monitoring in quarry restoration using drones. Minerals 2021;11(9):949.
  • [101] Padro J-C, Cardozo J, Montero P, Ruiz-Carulla R, Alcaniz JM, Serra D, et al. Drone-based identification of erosive processes in open-pit mining restored areas. Land 2022;11(2):212.
  • [102] Nasategay FFU. Detection and monitoring of tailings dam surface erosion using UAV and machine learning. Reno: University of Nevada; 2020.
  • [103] Benevenuti FD, de Lemos Peroni R. Detecting drainage pitfalls in open-pit mines and haul roads using UAV- photogrammetry. Dyna 2021;88(216):190-5.
  • [104] Medinac F, Bamford T, Hart M, Kowalczyk M, Esmaeili K. Haul road monitoring in open pit mines using unmanned aerial vehicles: a case study at Bald Mountain Mine Site. Min Metall Expl 2020;37(6):1877-83.
  • [105] Douglas AD. Mining haul road defect detection: advancement in automated road extent and response calibration for improved maintenance. Missouri University of Science and Technology; 2021.
  • [106] Rauhala A, Tuomela A, Davids C, Rossi PM. UAV remote sensing surveillance of a mine tailings impoundment in sub-arctic conditions. Rem Sens 2017;9(12):1318.
  • [107] Lechner AM, Baumgartl T, Matthew P, Glenn V. The impact of underground longwall mining on prime agricultural land: a review and research agenda. Land Degrad Dev 2016; 27(6):1650-63.
  • [108] Xiao W, Chen J, Da H, Ren H, Zhang J, Zhang L. Inversion and analysis of maize biomass in coal mining subsidence area based on UAV images. Trans Chin Soc Agric Mach 2018;49:1000-298.
  • [109] Ren H, Xiao W, Zhao Y, Hu Z. Land damage assessment using maize aboveground biomass estimated from unmanned aerial vehicle in high groundwater level regions affected by underground coal mining. Environ Sci Pollut Control Ser 2020;27(17):21666-79.
  • [110] Xiao W, Ren H, Sui T, Zhang H, Zhao Y, Hu Z. A UAV-and field-based investigation of the land degradation and soil erosion at opencast coal mine dumps after 5 years’ evolution of natural processes. 2021.
  • [111] Fang Y, Hu Z, Xu L, Wong A, Clausi D. Estimation of iron concentration in soil of a mining area from UAV-based hyperspectral imagery. In: 2019 10th workshop on hyperspectral imaging and signal processing: evolution in remote sensing (WHISPERS). IEEE; 2019.
  • [112] Jackisch R, Lorenz S, Zimmermann R, Mockel R, Gloaguen R. Drone-borne hyperspectral monitoring of acid mine drainage: an example from the Sokolov lignite district. Rem Sens 2018;10(3):385.
  • [113] Castendyk DN, Straight BJ, Voorhis JC, Somogyi MK, Jepson WE, Kucera BL. Using aerial drones to select sample depths in pit lakes. In: Mine closure 2019: proceedings of the 13th international conference on mine closure. Australian Centre for Geomechanics; 2019.
  • [114] Dunnington L, Nakagawa M. Fast and safe gas detection from underground coal fire by drone fly over. Environ Pollut 2017;229:139-45.
  • [115] Padro JC, Carabassa V, Balague J, Brotons L, Alcaniz JM, Pons X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci Total Environ 2019;657:1602-14.
  • [116] LeeDG,YuYG,RuJH,LeeHJ.Changemonitoringinecological restoration area of open-pit mine using drone photogrammetry. J Korean Soc Geospat Info Sci 2016;24(4):97-104.
  • [117] Urban R, Stroner M, Kremen T, Braun J, Moser M. A novel approach to estimate systematic and random error of terrain derived from UAVs: a case study from a post-mining site. Acta Montan Slovaca 2018;23(3).
  • [118] Moudrý V, Gdulova K, Fogl M, Klapste P, Urban R, Komarek J, et al. Comparison of leaf-off and leaf-on combined UAV imagery and airborne LiDAR for assessment of a post-mining site terrain and vegetation structure: prospects for monitoring hazards and restoration success. Appl Geogr 2019;104:32-41.
  • [119] Johansen K, Erskine PD, McCabe MF. Using Unmanned Aerial Vehicles to assess the rehabilitation performance of open cut coal mines. J Clean Prod 2019;209:819-33.
  • [120] Zimroz P, Trybala P, Wroblewski A, Goralczyk M, Szrek J, Wojcik A, et al. Application of UAV in search and rescue actions in underground mineda specific sound detection in noisy acoustic signal. Energies 2021;14(13):3725.
  • [121] Stoll J, Moritz D. Unmanned aircraft systems for rapid near surface geophysical measurements. In: 75th EAGE conference & exhibition-workshops. European Association of Geoscientists & Engineers; 2013.
  • [122] Eck C, Imbach B. Aerial magnetic sensing with an UAV helicopter. In: International archives of the photogrammetry, remote sensing and spatial information sciences; 2011. 38(1/C22).
  • [123] Malehmir A, Dynesius L, Paulusson K, Paulusson A, Johansson H, Bastani M, et al. The potential of rotary-wing UAV-based magnetic surveys for mineral exploration: a case study from central Sweden. Lead Edge 2017;36(7): 552-7.
  • [124] Jakob S, Zimmermann R, Gloaguen R. Processing of drone- borne hyperspectral data for geological applications. In: 2016 8th workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS). IEEE; 2016.
  • [125] Jakob S, Zimmermann R, Gloaguen R. The need for accurate geometric and radiometric corrections of drone-borne hyperspectral data for mineral exploration: mephystodA toolbox for pre-processing drone-borne hyperspectral data. Rem Sens 2017;9(1):88.
  • [126] Meng Y, Ren Z, Zhang J, Lv C. Application of UAV aerial survey technology in mine environmental geological sur- vey. In: Perfect proceedings solution for scientific conferences; 2022.
  • [127] Beretta F, Rodrigues AL, Peroni RL, Costa JFCL. Automated lithological classification using UAV and machine learning on an open cast mine. B Appl Earth Sci 2019;128(3):79-88.
  • [128] Kirsch M, Loen S, Zimmermann R, Tusa L, Mockel R, Hodl P, et al. Integration of terrestrial and drone-borne hyperspectral and photogrammetric sensing methods for exploration mapping and mining monitoring. Rem Sens 2018;10(9):1366.
  • [129] Heincke B, Jackisch R, Saartenoja A, Salmirinne H, Rapp S, Zimmermann R, et al. Developing multi-sensor drones for geological mapping and mineral exploration: setup and first results from the MULSEDRO project. GEUS Bull 2019;43.
  • [130] Jackisch R, Madriz Y, Zimmermann R, Pirttijarvi M, Saartenoja A, Heincke BH, et al. Drone-borne hyperspectral and magnetic data integration: otanmaki Fe-Ti-V deposit in Finland. Rem Sens 2019;11(18):2084.
  • [131] Vergouw B, Nagel H, Bondt G, Custers B. Drone technology: types, payloads, applications, frequency spectrum is- sues and future developments. In: The future of drone use. Springer; 2016. p. 21-45.
  • [132] Jordan BR. A bird’s-eye view of geology: the use of micro drones/UAVs in geologic fieldwork and education. GSA Today (Geol Soc Am) 2015;25(7):50-2.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d6a337b-e91a-415c-8a5f-9bef447c93c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.