PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of variable viscosity on natural convection flow of an optically thick gray gas past a horizontal surface in the presence of internal heat generation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical investigation to discuss the effects of radiation and variable viscosity on heat and mass transfer characteristics of natural convection over a horizontal surface embedded in a saturated porous medium in the presence of internal heat generation is carried out in this study. The working fluid for the investigation is optically thick gray gas. The Dufour and Soret effects are also taken into account. Similarity transformations are employed to obtain nonlinear ordinary differential equations from the governing equations of the present problem. The numerical results for the transformed governing equations are computed by using commercial boundary value problem solver for ordinary differential equations. The effects are discussed by varying the parameters such as radiation, Dufour and Soret numbers, buoyancy ratio, Prandtl number, Schmidt number, and variable viscosity. Presence of internal heat generation enhances the velocity profile and significantly decreases the concentration boundary layer thickness. On increasing fluid radiation, the temperature of the fluid is higher than that of the surface and the concentration boundary layer thickness decreases away from the surface.
Rocznik
Tom
Strony
3--22
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics, School of Arts, Science and Humanities, Sastra Deemed University, Thanjavur, Tamil Nadu-613401, India.
  • Department of Mathematics, School of Arts, Science and Humanities, Sastra Deemed University, Thanjavur, Tamil Nadu-613401, India.
  • Department of Mathematics, Thiruvalluvar Government Arts College, Rasipuram, Tamil Nadu- 631401, India
Bibliografia
  • [1] Ingham D.B., Pop. I.: Transport Phenomena in Porous Media III. Elsevier, Oxford 2005.
  • [2] Nield D.A., Bejan. A.: Convection in Porous Media, 3rd Edn. Springer, New York 2006.
  • [3] Vafai K.: Handbook of Porous Media, Taylor and Francis, New York 2005.
  • [4] Cheng P., Minkowycz W.J.: Free convection about a vertical plate embedded in a porous medium with application to heat transfer from a dike. J. Geophysical Res. 82(1977), 14, 2040–2044.
  • [5] Lai F.C., Kulacki. F.A.: The effect of variable viscosity on convection heat transfer along a vertical surface in a saturated porous medium. Int. J. Heat Mass Tran. 33(1990), 5, 1028–1031.
  • [6] Mehrizi A. A., Vazifeshenas Y, Domairry G.: New analysis of natural convection boundary layer flow on a horizontal plate with variable wall temperature. J. Theor. App. Mech-Pol. 50(2012), 1001–1010.
  • [7] Henclik S.: Mathematical model and numerical computations of transient pipe flows with fluid-structure interaction. Trans. Ins. Fluid-Flow Mach. 122(2010), 77–94.
  • [8] Eckert E.R.G., Drake R.M. : Analysis of Heat and Mass Transfer. McGraw-Hill, New York 1972.
  • [9] Badur J., Karcz M., Lemański M., Nastałek L.: Foundations of the Navier-Stokes boundary conditions in fluid mechanics. Trans. Inst. Fluid-Flow Mach. 123(2011), 3–55.
  • [10] Anghel M., Takhar H.S., Pop I.: Dufour and Soret effects on free convection boundary layer over a vertical surface embedded in a porous medium. Studia Universitatis BabesBolyai Mathematica. XLV(2000), 11–22.
  • [11] Lakshmi Narayana P.A., Murthy P.V.S.N.: Soret and Dufour effects on free convection heat and mass transfer from a horizontal flat plate in a Darcy porous medium. ASME J. Heat Transfer 130(2008), 10, 104504-1–104504-5.
  • [12] El-Arabawy H.A.M. : Soret and Dufour effects on natural convection flow past a vertical surface in a porous medium with variable surface temperature. J. Math Stat. 5(2009), 3, 190–198.
  • [13] Tai B.C., Char M.I.: Soret and Dufour effects on free convection flow of non-Newtonian fluids along a vertical plate embedded in a porous medium with thermal radiation. Int. Commun. Heat Mass 37(2010), 480–483.
  • [14] Crepeau J.C., Clarksean R.: Similarity solutions of natural convection with internal heat generation. J. Heat Trans. 119(1997), 1, 183–185.
  • [15] Postelnicu A., Pop I.: Similarity solutions of free convection boundary layers over vertical and horizontal surfaces in porous media with internal heat generation. Int. Commun. Heat Mass 26(1999), 8, 1183–1191.
  • [16] Alam M.S., Rahman M.M., Samad M.A.: Numerical study of the combined free-forced convection and Mass transfer flow past a vertical porous plate in a porous medium with heat generation and thermal diffusion. Nonlinear Anal-Model. 11(2006), 4, 331–343.
  • [17] Sharma P.R.: Effects of varying viscosity and thermal conductivity on steady MHD free convective flow and heat transfer along an isothermal plate with internal heat generation. Int. J Numerical Method 19 (2009), 1, 78–92.
  • [18] Makinde O.D.: Similarity solution for natural convection from a moving vertical plate with internal heat generation and a convective boundary condition. Therm. Sci. Int. Sci J. 15(2011), Suppl. 1, 137–143.
  • [19] Raptis A.: Radiation and free convection flow through a porous medium. Commun. Heat Mass 25(1998), 2, 289–295.
  • [20] Hossain M.A., Takhar H.S.: Thermal radiation effects on natural convection flow over an isothermal horizontal plate. Heat Mass Transfer 35(1999), 4, 321–326.
  • [21] Hossain M.A., Khanafer K., Vafai K.: The effect of radiation on free convection flow of fluid with variable viscosity from a porous vertical plate. Int. J. Therm. Sci. 40(2001), 2, 115–124
  • [22] Magyari E., Pantokratoras A. : Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int. Commun. Heat Mass 38( 2011), 554–556.
  • [23] Siddiqa S., Hossain M.A., Saha S.C.: The effect of thermal radiation on the natural convection boundary layer flow over a wavy horizontal surface. Int. J. Therm. Sci. 84(2014), 143-150.
  • [24] Rup K., Dróżdż A.: The effect of reduced heat transfer in a micropolar fluid in natural convection. Arch. Thermodyn 34(2013), 3, 45–59.
  • [25] Roszko A., Fornalik-Wajs E.: The heat transfer and flow structure analyses of low concentration copper nanofluids in a strong magnetic field. Trans. Inst. Fluid-Flow Mach. 128(2015), 29–42.
  • [26] Lai F.C., Kulacki F.A.: Coupled heat and mass transfer by natural convection from vertical surfaces in porous media. Int. J. Heat Mass Tran. 34(1991), 4-5, 1189–1994.
  • [27] Kumari M.: Variable viscosity effects on free and mixed convection boundary layer flow from a horizontal surface in a saturated porous medium-variable heat flux. Mech. Res. Commun. 28(2001), 3, 339–348.
  • [28] Kannan, T., Moorthy M.B.K.: Effects of variable viscosity on power-law fluids over a permeable moving surface with slip velocity in the presence of heat generation and suction. J. Appl. Fluid Mech. 9(2016), 6, 2791–2801.
  • [29] Makinde O.D.: Effect of variable viscosity on thermal boundary layer over a permeable flat plate with radiation and a convective surface boundary condition. J. Mech. Sci. Technol. 26(2012), 5, 1615–1622.
  • [30] Cieśliński J.T., Ronewicz K., Smoleń S.: Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids. Arch. Thermodyn. 36(2015), 4, 35–47.
  • [31] Ling J.X., Dybbs A.: Forced convection over a flat plate submersed in a porous medium: variable viscosity case. In: Proc. ASME 87-WA/HT-23, New York 1987.
  • [32] Shampine L.F., Kierzenka J., Reichelt M.W. : Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. http://www.mathworks.com/bvp_tutorial 2003
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d697046-42cd-4e18-9c21-385d247d5b1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.