PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Froth flotation of Aljustrel sulphide complex ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Froth flotation of copper-zinc-lead ores is a complex process based on similar metallurgy processing and strong interactions between chalcopyrite and sphalerite. These types of ores represent 15% of the world production and 7.5% of copper deposits all over the world. In the present study, an attempt is made to assess the feasibility of froth flotation of a complex sulphide ore, where the effect of liberation grade as well as depressant, collector and frother dosage was studied. Copper flotation is dependent on the mineral liberation grade, which is significantly related with the size distribution. It was shown that longer grinding time increased the Cu grade but decreased the copper recovery due to the presence of very fine particles. Lime and sodium metabisulphite, used as depressants, allowed to achieve a good flotation performance. It was shown that for this type of ore lower dosage of the collector should be applied. Finally, a higher frother dosage led to a greater selectivity and reduced entrainment of very fine particles, but also caused low kinetic ratio and low recovery of valuable minerals. A well-defined flotation objective was imperative for a good liberation grade and reagents dosage selection, mainly for complex sulphide ores. A useful contribute was given to a better technical understanding of flotation of a complex sulphide ore from the Moinho deposit.
Rocznik
Strony
758--769
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Departamento de Engenharia de Minas, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
autor
  • Departamento de Engenharia de Minas, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
autor
  • Almina, Minas do Alentejo SA, Algares, 7600-015 Aljustrel, Portugal
autor
  • Laboratório Nacional de Energia e Geologia, Rua da Amieira, Apartado 1089, 4466-901 S. Mamede de Infesta
Bibliografia
  • ASIAN A., EKMEKÇI Z., BAYRAKTAR I., AKSANI B., 2003. The effect of reagent addition points and aeration on the fllotation performance of sulphide minerals. 18th International mining congress and exhibition of Turkey. Turkey, IMCET.
  • BARBIAN N., HADLER K., VENTURA-MEDINA E., CILLIERS J.J., 2005. The froth stability columm: linking froth stability and flotation performance. Minerals Engineering. 18, 317-324
  • BULATOVIC S.M.,2007. Handbook of flotation reagents: Chemistry, Theory and Practice.Flotation of Sulfide Ores. Elsevier Science Technology Books,
  • CHO Y.S., LASKOWSKY J.S., 2002. Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing. 64, 69-80
  • EK, CS., E., 1985. Selective flotation of different complex pyritic ores. In Complex Sulfides, Zunkel A.D. and others (Eds.), TMS-AIME, Warrendale, 83-101
  • FUERSTENAU M.C., HAN K.N., 2011. Introduction to mineral processing. Society for Mining, Metallurgy and Exploration,
  • FUERSTENAU M.C., MILLER J.D., KUHN M.C., 1985. Chemistry of Flotation., Society of Mining Engineers, 1-14.
  • FUERSTENAU M.C., URBINA R.H., 1987. Flotation fundamentals. New York and Basel, Marcel Dekker Inc.: 1-30.
  • GREET C.J., BRUCKARD W.J., MACKAY D., 2010. Collector - addition point and consuption. Mineral Processing Extractive Metallurgy, 119, 235-241
  • KLIMPEL, 1995. The influence of frother structure on industrial coal flotation, high efficiency coal preparation. Society for Mining, Metallurgy, and Exploration, Inc., Littleton, CO (United States).
  • KONISGMANN K.V., 1973. Aeration in plant practice. 5th Annual Meeting of CMP: 300-315.
  • KOSTOVIC M., GLIGORIC Z., 2015. Multi-criteria decision making for collector selection in the flotation of lead-zinc sulphide ore. Minerals Engineering, 74, 142-149
  • KOWALCZUK P.B., DRZYMALA J., 2017. Selectivity and power of frothers in copper ore flotation. Physicochem. Probl. Miner. Process. 53(1), 515–523.
  • MACHADO LEITE M.R., 1992. Liberation by size reduction. Consequences and improvements on flotation kinetics. Innovations in Flotation Technology, Volume 208 of the series NATO ASI Series pp 149-170
  • PATTISON I.G., 1981. The action of sodium sulphite as a depressant in sulfide mineral flotation systems containing chalcopyrite, galena, pyrite and sphalerite. Melbourne, Australia: University of Melbourne.
  • SENIOR C., TRALIAR W.J., 1991. The influence of metal hydroxides and collector on the flotation chalcopyrite. International Journal of Mineral Processing 33(1–4), 321–341
  • SHUHUA H., 2006. Depression of pyrite in the flotation of copper ores. South Australia: University of South Australia.
  • SILVA A.M.F., 1999. A influência do controlo Eh/pH em flutuação diferencial de sulfuretos complexos. Porto: Universidade do Porto.
  • SMITH P.G., WARREN L.J., 1989. Entrainment of particles into flotation froths. Gordon and Breach, Science Publisher.
  • WANG L., PENG Y., RUNGE K., 2016. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology 288, 202-211.
  • WILLS B., NAPIER-MUNN T., 2006. Mineral Processing Technology. Elsevier Science Technology Books,
  • YIANATOS J., VINNET L., CARRASCO C., ALVAREZ-SILVA M., 2015. Effect of entrainment in bubble load measurement on froth recovery estimation at industrial scale. Minerals Engineering 72, 31-35.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d676c99-2506-4c74-bbdc-86b684d80e93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.