Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of a numerical analysis of the effect of the position of non-metallic inclusions in a hardened top layer in 16MnCr5 steel on the mechanism of fatigue destruction. An analysis of a hardened layer formed by thermo-chemical treatment using FineCarb® technology was conducted.Non-metallic inclusions formed by deoxidation of steel were studied; they are usually made of calcium and aluminum. Four positions of inclusions in the hardened layer were tested: under the layer, in the middle part of the layer, under the surface and on the border of two sublayers. The results of the FEM analysis were treated as a qualitative analysis. A map of plastic strains around the inclusion under study was observed. The appearance of plastic strains in the area under analysis signaledthe initiation of a fatigue crack. It was observed that the mechanism of destruction depends largely on the distribution of stress in the top layer and on the place where the inclusion is anchored in the layer. Inclusions under the layer were found to be the main cause of the loss of the structural continuity, which explains the most frequent cases of the initiation of fatigue cracks.
Wydawca
Rocznik
Tom
Strony
66--74
Opis fizyczny
Bibliogr. 22 poz., fig.
Twórcy
autor
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
Bibliografia
- 1. Dybowski K., Kula P., Lipa S., Pietrasik R. Bending fatigue strength determination of 17CrNi6-6 steel after low pressure carburising, Material Engineering, 31(4), 2010, 939-941.
- 2. Dybowski K., Kula P., Pietrasik R., Lipa S. Comparison of fatigue strength of 17CrNi6-6 and 16MnCr5 steel after vacuum,Material Engineering, 32(4), 2011, 392-394.
- 3. Dybowski K., Sawicki J., Kula P., Januszewicz B., Atraszkiewicz R., Lipa S. The effect of the quenching method on the deformations size of gear wheels after vacuum carburizing. Archives of Metallurgy and Material, 61(2B), 2016, 1057–1062.
- 4. Gawroński Z., Malasiński A., Sawicki J. Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels. International Journal of Automotive Technology, 11(1), 2010, 127-131.
- 5. Gawroński Z., Sawicki J. Technological surface layer selection for small module pitches of gear wheels working under cyclic contact loads. Materials Science Forum, 513, 2006, 69-74.
- 6. Kula P., Dybowski K., Lipa S., Pietrasik R., Atraszkiewicz R., Klimek L., Januszewicz B., Wołowiec E. Investigating Fatigue Strength of Vacuum Carburized 17CrNi6-6 Steel Using a Resonance High Frequency Method. Solid State Phenomena,225, 2015, 45-52.
- 7. Kula P., Pietrasik R., Dybowski K. Vacuum carburizing – process optimization. Journal of Materials Processing Technology, 2005, 164-165.
- 8. Lei Z., Hong Y., Xie J., Sun Ch., Zhao A. Effects of inclusion size and location on very-high-cycle fatigue behaviour for high strength steels, Materials Science & Engineering, A 558, 2012, 234–241.
- 9. Lemaitre J. A Course on Damage Mechanics, Springer-Verlag, Berlin 1996.
- 10. Lis T., Różański P. Engineering of non-metallic inclusions in liquid steel, Metallurgist, Metallurgical News,72(5), 2005, 259-264.
- 11. Niikura M, Yokota Y, Sato K, Shirota T. Ultra refinement of grain size and its effect on mechanical properties. Proceedings of the Workshop on New Generation Steel, 13–16 November. Beijing (China): The Chinese Society for Metals, 2001, 100–103.
- 12. Sakai T., Sato Y., Nagano N., Takeda M., Oguma N. Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading, International Journal of Fatigue, 28, 2006, 1547-1554.
- 13. Sawicki J., Górecki M., Kaczmarek Ł., Gawroński Z., Dybowski K., Pietrasik R., Pawlak W. Increasing The Durability Of Pressure Dies By Modern Surface Treatment Methods. Chiang Mai Journal of Science, 40(5), 2013, 886 – 897.
- 14. Sawicki J., Kruszyński B., Wójcik R. The influence of grinding conditions on the distribution of residual stress in the surface layer of 17CrNi6-6 steel after carburizing, Advances in Science and Technology Research Journal, 11(2),2017, 17–22.
- 15. Sozańska M. Hydrogen destruction type “fish eyes” selected steel for energetics, Academic Press Silesian University of Technology,1705, 2006.
- 16. Stachurski W., Zgórniak P., Sawicki J., Przybysz M. Hardening-related deformations of gear wheels after vacuum carburising and quenching in gas. Advances in Science and Technology Research Journal, 11(1), 2017, 237–245.
- 17. Wang QY, Berard JY, Bathias C et al. Gigacycle fatigue of ferrous alloys. Fatigue &Fracture of Engineering Materials Structures, 22, 1999, 667.
- 18. Wang QY, Berard JY, Bathias C et al. High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires, Fatigue &Fracture of Engineering Materials Structures, 22, 1999, 673.
- 19. Wang Q.Y., Bathias C., Kawagoishi N., Chen Q. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, , International Journal of Fatigue, 24, 2002, 1269-1274.
- 20. Weng YQ. Development of ultrafine grained steels in China. In: Proceedings of the Workshop on New Generation Steel, 13–16 November, Beijing (China), The Chinese Society for Metals, 2001, 1–7.
- 21. Yang Z.G., Yao G., Li G.Y., Li S.X., Chu Z.M., Hui W.J.Dong H., Weng Y.Q. The effect of inclusions on the fatigue behavior of fine-grained high strength 42CrMoVNb steel, International Journal of Fatigue, 26, 2004, 959-966.
- 22. Zhou S, Murakami Y, Beretta S, Fukushima Y. Experimental investigation statistics of extremes for three-dimensional distribution of non-metallic inclusions. Materials ScienceTechnology,18, 2002, 1535–1543.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d5808b7-2bd6-4d32-a809-47018b6df7c7