PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SuperDARN w Polsce – perspektywy

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
SuperDARN in Poland – a perspective
Języki publikacji
PL
Abstrakty
PL
SuperDARN (Super Dual Auroral Radar Network) jest światową siecią radarów do badania górnych warstw atmosfery, jonosfery i ich sprzężenia z magnetosferą i wiatrem słonecznym (Greenwald i in. 1995; Chisham i in. 2007; Lester 2008, 2013, Nishitani i in. 2019). W artykule przybliżamy szczegóły techniczne, tematy badawcze i publikacje związane z działalnością SuperDARN oraz korzyści płynące z polskiego w nim udziału, który mógłby wzmocnić badania krajowe, jak i współpracę międzynarodową oraz otworzyć nowe tematy badawcze. Zanim to będzie możliwe, należy rozwiązać kilka technicznych kwestii, których tło i perspektywy nakreślamy.
EN
SuperDARN (Super Dual Auroral Radar Network) is a global radar network for studying the upper atmosphere, ionosphere, thermosphere and mesosphere and their coupling with the magnetosphere and solar wind (Greenwald et al. 1995; Chisham et al. 2007; Lester 2008, 2013, Nishitani et al. 2019). In the article we bring closer to national readers the SuperDARN network through describing its technical details, projects and publications. In addition to strengthening present research Polish participation in SuperDARN could result in development of new topics in national research and in international cooperation. Before it is possible, several technical issues should be solved, the background and perspectives of which we outline in the article.
Rocznik
Tom
Strony
221--251
Opis fizyczny
Bibliogr. 78 poz., fot., mapa, rys., wykr.
Twórcy
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk
autor
  • Instytut Geofizyki Polskiej Akademii Nauk
  • Instytut Geofizyki Polskiej Akademii Nauk
  • PIT-Radwar SA, Warszawa, Polska
Bibliografia
  • [1] Alexander M. J., Geller M., McLandress C., Polavarapu S., Preusse P., Sassi F., Sato K., Eckermann S., Ern M., Hertzog A., Kawatani Y. A., Pulido M., Shaw T., Sigmond M., Vincent R., Watanabe S., 2010, Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models, Quarterly Journal of the Royal Meteorological Society, 136 (650), 1103-1124, DOI: 10.1002/qj.637.
  • [2] Araujo-Pradere E. A., Fuller-Rowell T. J., Codrescu M. V., 2002, STORM: An empirical storm-time ionospheric correction model 1. Model description, Radio Science, 37 (5), DOI: 10.1029/2001RS002467.
  • [3] Azzarone A., Bianchi C., Pezzopane M., Pietrella M., Scotto C., Settimi A., 2012, IONORT: A Windows software tool to calculate the HF ray tracing in the ionosphere, Computers & Geosciences, 42, 57-63, DOI: 10.1016/j.cageo.2012.02.008.
  • [4] Baker K. B., Dudeney J. R., Greenwald R. A., Pinnock M., Newell P. T., Rodger A. S., Mattin N., Meng C.-I., 1995, HF radar signatures of the cusp and low-latitude boundary layer, Journal of Geophysical Research – Space Physics, 100 (A5), 7671-7696, DOI: 10.1029/94JA01481.
  • [5] Baker J. B. H., Greenwald R. A., Ruohoniemi J. M., Oksavik K., Gjerloev J. W., Paxton L. J., Hairston M. R., 2007, Observations of ionospheric convection from the Wallops SuperDARN radar at middle latitudes, Journal of Geophysical Research – Space Physics, 112 (A1), DOI: 10.1029/2006JA011982.
  • [6] Baker J. B. H., Ruohoniemi J. M., Shepherd S. G., McWilliams K. A., Greenwald R. A., Bristow W. A., 2008, Those DARN radars: new directions for the Super Dual Auroral Radar Network, [w:] Proceedings of XXIX URSI General Assembly, 7-16 sierpień 2008, Chicago, USA, Union Radio Scientifique Internationale.
  • [7] Berngardt O. I., Kurkin V. I., Zherebtsov G. A., Kusonski O. A., Grigorieva S. A., 2013, Ionospheric effects during first 2 hours after the Chelyabinsk meteorite impact, Cornell University, arXiv:1308.3918 [physics.geo-ph].
  • [8] Berngardt O. I., Perevalova N. P., Dobrynina A. A., Kutelev K. A., Shestakov N. V., Bakhtiarov V. F., Kusonsky O. A., Zagretdinov R. V., Zherebtsov G. A., 2015b, Toward the azimuthal characteristics of ionospheric and seismic effects of “Chelyabinsk” meteorite fall according to the data from coherent radar, GPS, and seismic networks, Journal of Geophysical Research – Space Physics, 120 (12), 10754-10771, DOI: 10.1002/2015JA021549.
  • [9] Berngardt O. I., Ruohoniemi J. M., Nishitani N., Shepherd S. G., Bristow W. A., Miller E. S., 2018, Attenuation of decameter wavelength sky noise during X-ray solar flares in 2013-2017 based on the observations of midlatitude radars, Journal of Atmospheric and Solar-Terrestrial Physics, 173, 1-13, DOI: 10.1016/j.jastp.2018.03.022.
  • [10] Berngardt O. I., Ruohoniemi J. M., St-Maurice J.-P., Marchaudon A., Kosch M. J., Yukimatu A. S., Nishitani N., Shepherd S. G, Marcucci M. F., Hu H., Nagatsuma T., Lester M., 2019, Global diagnostics of ionospheric absorption during X-Ray solar flares based on 8- to 20-MHz noise measured by over-the-horizon radars, Space Weather, 17 (6), 907-924, DOI: 10.1029/2018SW002130.
  • [11] Berngardt O. I., Zolotukhina N. A., Oinats A. V., 2015a, Observations of field-aligned ionospheric irregularities during quiet and disturbed conditions with EKB radar: first results, Earth, Planets and Space, 67 (1), DOI: 10.1186/s40623-015-0302-3.
  • [12] Bianchi C., Settimi, A., Scotto C., Azzarone A., Lozito A., 2011, A method to test HF ray tracing algorithm in the ionosphere by means of the virtual time delay, Advances in Space Research, 48 (10), 1600-1605, DOI: 10.1016/j.asr.2011.07.020.
  • [13] Bilitza D., Altadill D., Zhang Y., Mertens C., Truhlik V., Richards P., McKinnell L-A., Reinisch B., 2014, The International Reference Ionosphere 2012 a model of international collaboration, Journal of Space Weather and Space Climate, 4, DOI: 10.1051/swsc/2014004.
  • [14] Bland E. C., McDonald A. J., de Larquier S., Devlin J. C., 2014a, Determination of ionospheric parameters in real time using SuperDARN HF Radars, Journal of Geophysical Research – Space Physics, 119 (7), 5830-5846, DOI: 10.1002/2014JA020076.
  • [15] Bland E. C., McDonald A. J., Menk F. W., Devlin J. C., 2014b, Multipoint visualization of ULF oscillations using the Super Dual Auroral Radar Network, Geophysical Research Letters, 41 (18), 6314-6320, DOI: 10.1002/2014GL061371.
  • [16] Bojanowska M., 2005, Niezwykle silne burze pogody kosmicznej: zorze polarne nad Polską, Przegląd Geofizyczny, 50 (3-4), 219-227.
  • [17] Bristow W. A., Greenwald R. A., Samson J. C., 1994, Identification of high-latitude acoustic gravity wave source using the Goose Bay HF radar, Journal of Geophysical Research – Space Physics, 99 (A1), 319-331, DOI: 10.1029/93JA01470.
  • [18] Bristow W. A., Yee J.-H., Zhu X., Greenwald R. A., 1999, Simultaneous observations of the July 1996 2-day wave event using the Super Dual Auroral Radar Network and the High Resolution Doppler Imager, Journal of Geophysical Research – Space Physics, 104 (A6), 12715-12722, DOI: 10.1029/1999JA900030.
  • [19] Chisham G., Lester M., Milan S. E., Freeman M. P., Bristow W. A., Grocott A., McWilliams K. A., Ruohoniemi J. M., Yeoman T. K., Dyson P. L., Greenwald R. A., Kikuchi T., Pinnock M., Rash J. P. S., Sato N., Sofko G. J., Villain J.-P., Walker A. D. M., 2007, A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions, Surveys in Geophysics, 28 (1), 33-109, DOI: 10.1007/s10712-007-9017-8.
  • [20] Clausen L. B. N., Baker J. B. H., Ruohoniemi J. M., Greenwald R. A., Thomas E. G., Shepherd S. G., Talaat E. R., Bristow W. A., Zheng Y., Coster A. J., Sazykin S., 2012, Large-scale observations of a subauroral polarization stream by midlatitude SuperDARN radars: Instantaneous longitudinal velocity variations, Journal Geophysical Research – Space Physics, 117 (A5), DOI: 10.1029/2011JA017232.
  • [21] Custovic E., McDonald A. J., Whittington J., Elton D., Kane T. A., Devlin J. C., 2013, New antenna layout for a SuperDARN HF radar, Radio Science, 48 (6), 722-728, DOI: 10.1002/2013RS005156.
  • [22] Dymond K. F., Watts C., Coker C., Budzien S. A., Bernhardt P. A., Kassim N., Lazio T. J., Weiler K., Crane P. C., Ray P. S., Cohen A., Clarke T., Rickard L. J., Taylor G. B., Schinzel F., Pihlstrom Y., Kuniyoshi M., Close S., Colestock P., Myers S., Datta, A., 2011, A medium-scale traveling ionospheric disturbance observed from the ground and from space, Radio Science, 46 (5), DOI: 10.1029/2010RS004535.
  • [23] Frissell N. A., Baker J. B. H., Ruohoniemi J. M., Gerrard A. J., Miller E. S., Marini J. P., West M. L., Bristow W. A., 2014, Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar, Journal of Geophysical Research – Space Physics, 119 (9), 7679-7697, DOI: 10.1002/2014JA019870.
  • [24] Gopalswamy N., 2009, Introduction to special section on Large Geomagnetic Storms, Journal of Geophysical Research – Space Physics, 114 (A3), DOI: 10.1029/2008JA014026.
  • [25] Góral G., 2019a, SuperDARN radars – Introduction, [w:] Book of extended abstracts: “Electromagnetic ULF/ELF Fields on Earth and in Space” Conference, Warsaw, Poland, 3-5 July 2019, Publications of the Institute of Geophysics, Polish Academy of Sciences, 425 (M-32), 73-81, DOI: 10.25171/InstGeoph_PAS_Publs-2019-015.
  • [26] Góral G., 2019b, Radary SuperDARN – narzędzie do badania i monitorowania atmosfery i przestrzeni wokółziemskiej, Przegląd Geofizyczny, artykuł wysłany.
  • [27] Góral G., Koperski P., Kubicki M., Odzimek A., 2013, IRI-2011 ray paths simulation for mid-latitude SuperDARN station in Poland, International Reference Ionosphere (IRI) Workshop, 24-28 czerwca 2013, Olsztyn, Polska.
  • [28] Greenwald R. A., Baker K. B., Dudeney J. R., Pinnock M., Jones, T. B., Thomas E. C., Villain J.-P., Cerisier J.-C., Senior C., Hanuise C., Hunsucker R. D., Sofko G., Koehler J., Nielsen E., Pellinen R., Walker A. D. M., Sato N., Yamagishi H., 1995, DARN/SuperDARN. A global view of the dynamics of high-latitude convection, Space Science Reviews, 71 (1-4), 761-796, DOI: 10.1007/BF00751350.
  • [29] Greenwald R. A., Baker K. B., Hutchins R. A., Hanuise C., 1985, An HF phased-array radar for studying small-scale structure in the high-latitude ionosphere, Radio Science, 20 (1), 63-79, DOI: 10.1029/RS020i001p00063.
  • [30] Greenwald R. A., Oksavik K., Barnes R., Ruohoniemi J. M., Baker J., Talaat E. R., 2008, First radar measurements of ionospheric electric fields at sub-second temporal resolution, Geophysical Research Letters, 35 (3), DOI: 10.1029/2007GL032164.
  • [31] Greenwood R. I., Parkinson M. L., Ye H., Dyson P. L., 2006, Oceanographic research: A new application for SuperDARN radars, [w:] Proceedings of Workshop on Applications of Radio Science, WARS 2006 Conference, 15-17 luty, Leura, Australia.
  • [32] Grocott A., Milan S. E., Baker J. B. H., Freeman M. P., Lester M., Yeoman T. K., 2011, Dynamic subauroral ionospheric electric fields observed by the Falkland Islands radar during the course of a geomagnetic storm, Journal of Geophysical Research – Space Physics, 116 (A11), DOI: 10.1029/2011JA016763.
  • [33] Hall G. E., MacDougall J. W., Moorcroft D. R., St.-Maurice J.-P., Manson A. H., Meek C. R., 1997, Super Dual Auroral Radar Network observations of meteor echoes, Journal of Geophysical Research – Space Physics, 102 (A7), 14603-14624, DOI: 10.1029/97JA00517.
  • [34] Hibbins R. E., Freeman M. P., Milan S. E., Ruohoniemi J. M., 2011, Winds and tides in the midlatitude Southern Hemisphere upper atmosphere recorded with the Falkland Islands SuperDARN radar, Annales Geophysicae, 29 (11), 1985-1996, DOI: 10.5194/angeo-29-1985-2011.
  • [35] Hughes J. M., Bristow W. A., Greenwald R. A., Barnes R. J., 2002, Determining characteristics of HF communications links using SuperDARN, Annales Geophysicae, 20 (7), 1023-1030, DOI: 10.5194/angeo-20-1023-2002.
  • [36] Jenkins B., Jarvis M. J., Forbes D. M., 1998, Mesospheric wind observations derived from SuperDual Auroral Radar Network (SuperDARN) HF radar meteor echoes at Halley, Antarctica: Preliminary results, Radio Science, 33 (4), 957-965, DOI: 10.1029/98RS01113.
  • [37] Jones R. M., Stephenson J. J., 1975, A versatile 3-D ray tracing computer program for radio waves in the ionosphere, OT Report 75-76, US Dept. of Commerce, Office of Telecommunications, Waszyngton, 197 s.
  • [38] Karhunen T. J. T., Robinson T. R., Arnold N. F., Lester M., 2006, Determination of the parameters of travelling ionospheric disturbances in the high-latitude ionosphere using CUTLASS coherent scatter radars, Journal of Atmospheric and Solar-Terrestrial Physics, 68 (3-5), 558-567, DOI 10.1016/j.jastp.2005.03.021.
  • [39] Karlsson T., Marklund G. T., Blomberg L. G., Mälkki A., 1998, Subauroral electric fields observed by the Freja satellite: a statistical study, Journal of Geophysical Research – Space Physics, 103 (A3), 4327-4341, DOI: 10.1029/97JA00333.
  • [40] Karpachev A. T., Beloff N., Carozzi T. D., Denisenko P. F., Karhunen T. J. T., Lester M., 2010, Detection of large scale TIDs associated with the dayside cusp using SuperDARN data, Journal of Atmospheric and Solar-Terrestrial Physics, 72 (9-10), 653-661, DOI: 10.1016/j.jastp.2010.02.018.
  • [41] Kassim N. E., Lazio T. J. W., Erickson W. C., Perley R. A., Cotton W. D., Greisen E. W., Cohen A. S., Hicks B., Schmitt H. R., Katz D., 2007, The 74 MHz System on the Very Large Array, The Astrophysical Journal Supplement Series, 172 (2), 686-719, DOI: 10.1086/519022.
  • [42] Koustov A. V., Yakymenko K. N., Nishitani N., Ponomarenko P. V., 2014, Hokkaido HF radar signatures of periodically reoccurring nighttime medium scale traveling ionospheric disturbances detected at short ranges, Journal of Geophysical Research – Space Physics, 119 (2), 1200-1218, DOI: 10.1002/2013JA019422.
  • [43] Kunduri B., 2013, A study of interhemispheric magnetic conjugacy and large scale magnetosphere-ionosphere coupling using SuperDARN radars, PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 109 s.
  • [44] Kunduri B. S. R., Baker J. B. H., Ruohoniemi J. M., Nishitani N., Oksavik K., Erickson P. J., Coster A. J., Shepherd S. G., Bristow W. A., Miller E. S., 2018, A new empirical model of the subauroral polarization stream, Journal of Geophysical Research – Space Physics, 123 (9), 7342-7357, DOI: 10.1029/2018JA025690.
  • [45] de Larquier S., Ponomarenko P., Ribeiro A. J., Ruohoniemi J. M., Baker J. B. H., Sterne K. T., Lester M., 2013, On the spatial distribution of decameter-scale sub-auroral ionospheric irregularities observed by SuperDARN radars, Journal of Geophysical Research – Space Physics, 118 (8), 5244-5254, DOI: 10.1002/jgra.50475.
  • [46] Lester M., 2008, SuperDARN: An example of a network approach to geospace science in the twenty-first century, Journal of Atmospheric and Solar-Terrestrial Physics, 70 (18), 2309-2323, DOI: 10.1016/j.jastp.2008.08.003.
  • [47] Lester M., 2013, The Super Dual Auroral Radar Network (SuperDARN): An overview of its development and science, Advances in Polar Science, 24 (1), DOI: 10.3724/SP.J.1085.2013.00001.
  • [48] Lester M., Chapman P., Cowley S., Crooks S., Davies J., Hamadyk P., McWilliams K., Milan S., Parsons M., Payne D., Thomas E., Thornhill J., Wade N., Yeoman, T., Barnes R., 2004, Stereo CUTLASS – A new capability for the SuperDARN HF radars, Annales Geophysicae, 22 (2), 459-473, DOI: 10.5194/angeo-22-459-2004.
  • [49] Liemohn M. W., Zhang J.-C., Thomsen M. F., Borovsky J. E., Kozyra J. U., Ilie R., 2008, Plasma properties of superstorms at geosynchronous orbit: How different are they?, Geophysical Research Letters, 35 (6), DOI: 10.1029/2007GL031717.
  • [50] Makarevich R. A., Bristow W. A., 2014, Fine structure of subauroral electric field and electron content, Journal of Geophysical Research – Space Physics, 119 (5), 3789-3802, DOI: 10.1002/2014JA019821.
  • [51] McDonald A. J., Whittington J., de Larquier S., Custovic E., Kane T. A., 2013, Elevation angle of arrival determination for a standard and a modified SuperDARN HF radar layout, Radio Science, 48 (6), 709-721, DOI: 10.1002/2013RS005157.
  • [52] Milan S. E., Lester M., Yeoman T. K., 2002, HF radar polar patch formation revisited: summer and winter variations in dayside plasma structuring, Annales Geophysicae, 20 (4), 487-499, DOI: 10.5194/angeo-20-487-2002.
  • [53] Milan S. E., Provan G., Hubert B., 2007, Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates, Journal of Geophysical Research – Space Physics, 112 (A1), DOI: 10.1029/2006JA011642.
  • [54] Nishitani N., Ruohoniemi J. M., Lester M., Baker J. B. H., Koustov A. V., Shepherd S. G., Chisham G., Hori T., Thomas E. G. Makarevich R. A., Marchaudon A., Ponomarenko P., Wild J. A., Milan S. E., Bristow W. A., Devlin J., Miller E., Greenwald R. A., Ogawa T., Kikuchi T., 2019, Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars, Progress in Earth and Planetary Science, 6 (1), DOI: 10.1186/s40645-019-0270-5.
  • [55] Odzimek A., 2019, SuperDARN – perspektywy dla badań atmosfery, Przegląd Geofizyczny, artykuł wysłany.
  • [56] Ogawa T., Arnold N. F., Kirkwood S., Nishitani N., Lester M., 2003, Finland HF and Esrange MST radar observations of polar mesosphere summer echoes, Annales Geophysicae, 21 (4), 1047-1055, DOI: 10.5194/angeo-21-1047-2003.
  • [57] Ogawa T., Nishitani N., Otsuka Y., Shiokawa K., Tsugawa T., Hosokawa K., 2009, Medium-scale traveling ionospheric disturbances observed with the SuperDARN Hokkaido radar, all-sky imager, and GPS network and their relation to concurrent sporadic E irregularities, Journal of Geophysical Research – Space Physics, 114 (A3), DOI: 10.1029/2008JA013893.
  • [58] Oksavik K., Barth V. L., Moen J., Lester M., 2010, On the entry and transit of high-density plasma across the polar cap, Journal of Geophysical Research – Space Physics, 115 (A12), DOI: 10.1029/2010JA015817.
  • [59] Oksavik K., Greenwald R. A., Ruohoniemi J. M., Hairston M. R., Paxton L. J., Baker J. B. H., Gjerloev J. W., Barnes R. J., 2006, First observations of the temporal/spatial variation of the sub-auroral polarization stream from the SuperDARN Wallops HF radar, Geophysical Research Letters, 33 (12), DOI: 10.1029/2006GL026256.
  • [60] Parkinson M. L., Whittington J. S., Devlin J. C., Why do we need DIGIDARN – a global network?, [w:] Proceedings of Workshop on Applications of Radio Science, WARS 2006 Conference, 15-17 luty, Leura, Australia.
  • [61] Ponomarenko P. V., Menk F. W., Waters C. L., 2003, Visualization of ULF waves in SuperDARN data, Geophysical Research Letters, 30 (18), 1926-1929, DOI: 10.1029/2003GL017757.
  • [62] Ponomarenko P. V., St. Maurice J.-P., Hussey G. C., Koustov A. V., 2010, HF ground scatter from the polar cap: Ionospheric propagation and ground surface effects, Journal Geophysical Research – Space Physics, 115 (A10), DOI: 10.1029/2010JA015828.
  • [63] Popielawska B., A. Odzimek, I. Stanislawska, M. Kubicki, A. Wernik, G. Góral, M. Grzesiak, M. Pożoga, 2011, SuperDARN in Poland – study of potential scientific benefits, SuperDARN Workshop 2011, 30 maja-3 czerwca 2011, Dartmouth College, Hanover, New Hampshire, USA, http://superdarn.thayer.dartmouth.edu/workshop/proceedings.html.
  • [64] Ribeiro A. J., Ruohoniemi J. M., Baker J. B. H., Clausen L. B. N., Greenwald R. A., Lester M., 2012, A survey of plasma irregularities as seen by the midlatitude Blackstone SuperDARN radar, Journal of Geophysical Research – Space Physics, 117 (A2), DOI: 10.1029/2011JA017207.
  • [65] RTO Technical Report TR-IST-051, 2009, Characterising the Ionosphere, Final Report of Task Group IST-051, chapt.1.1.1.2 (Hawlitschka Stefan), chapt. 1.3.8 (Prikryl Paul).
  • [66] Ruohoniemi J. M., Baker K. B., 1998, Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations, Journal of Geophysical Research – Space Physics, 103 (A9), 20797-20811, DOI: 10.1029/98JA01288.
  • [67] Ruohoniemi J. M., Greenwald R. A., Baker K. B., Samson J. C., 1991, HF radar observations of Pc 5 Field Line Resonances in the midnight/early morning MLT sector, Journal of Geophysical Research – Space Physics, 96 (A9), 15697-15710, DOI: 10.1029/91JA00795.
  • [68] Samson J. C., Greenwald R. A., Ruohoniemi J. M., Frey A., Baker K. B., 1990, Goose Bay radar observations of Earth-reflected, atmospheric gravity-waves in the high-latitude ionosphere, Journal of Geophysical Research – Space Physics, 95 (A6), 7693-7709, DOI: 10.1029/JA095iA06p07693.
  • [69] Sojka J. J., Rice D., Eccles J. V., Berkey F. T., Kintner P., Denig W., 2004, Understanding midlatitude space weather: Storm impacts observed at Bear Lake Observatory on 31 March 2001, Space Weather, 2 (10), DOI: 10.1029/2004SW000086.
  • [70] Spiro R. W., Heelis R. A., Hanson W. B., 1979, Rapid subauroral ion drifts observed by Atmosphere Explorer C, Geophysical Research Letters, 6 (8), 657-660, DOI: 10.1029/GL006i008p00657.
  • [71] Sterne K. T., 2010, Testing the re-designed SuperDARN HF radar and modeling of a Twin Terminated Folded Dipole Array, MSc. Electr. Eng. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 104 s.
  • [72] Stocker A. J., Arnold N. F., Jones T. B., 2000, The synthesis of travelling ionospheric disturbance (TID) signatures in HF radar observations using ray tracing, Annales Geophysicae, 18 (1), 56-64, DOI: 10.1007/s00585-000-0056-4.
  • [73] Thomas E. G., Sterne K. T., Ponomarenko P. V., Baker J. B. H., Ruohoniemi J. M., 2014, Remote sensing of sea ice cover using SuperDARN HF radars, 2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), DOI: 10.1109/USNC-URSI-NRSM.2014.6928034.
  • [74] Tsutsumi M., Yukimatu A. S., Holdsworth D. A., Lester M., 2009, Advanced SuperDARN meteor wind observations based on raw time series analysis technique, Radio Science, 44 (2), DOI: 10.1029/2008RS003994.
  • [75] Walach M.-T., Grocott A., 2019, SuperDARN observations during geomagnetic storms, geomagnetically active times, and enhanced solar wind driving, Journal of Geophysical Research – Space Physics, 124 (7), 5828-5847, DOI: 10.1029/2019JA026816.
  • [76] Yeoman T. K., James M., Mager P. N., Klimushkin D. Y., 2012, SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory, Journal of Geophysical Research – Space Physics, 117 (A6), DOI: 10.1029/2012JA017668.
  • [77] Yeoman T. K., Wright D. M., Robinson T. R., Davies J. A., Rietveld M., 1997, High spatial and temporal resolution observations of an impulse driven field line resonance in radar backscatter artificially generated with the Tromsø heater, Annales Geophysicae, 15 (6), 634-644, DOI: 10.1007/s00585-997-0634-9.
  • [78] Yukimatu A. S., Tsutsumi M., 2002, A new SuperDARN meteor wind measurement: Raw time series analysis method and its application to mesopause region dynamics, Geophysical Research Letters, 29 (20), DOI: 10.1029/2002GL015210.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d5496e8-96ed-476b-8697-cb5ed7b9d39e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.