PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie kompostu jako taniego sorbentu do usuwania barwników z roztworów wodnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of Compost as a Cheap Sorbent for Dyes Removal from Aqueous Solutions
Języki publikacji
PL
Abstrakty
EN
This study was aimed at determining the feasibility of using compost as an unconventional sorbent for dyes removal from aqueous solutions. Compost applied in the study was a product of sewage sludge composting with plant residues (birch wood chips and rapeseed straw). Experiments were conducted for two anionic reactive dyes: Reactive Yellow 84 [RY84] (1701 g/mol – λmax = 357.5 nm) and Reactive Black 5 [RB5] (991 g/mol – λmax = 600.0 nm), and for two cationic dyes: Basic Green 4 [BG4] (365 g/mol – λmax = 618.0 nm) and Basic Violet 10 [BV10] (479 g/mol – λmax = 547.5 nm). The scope of the study included: determination of the optimal pH value of dyes adsorption onto compost, determination of equilibrium time of dyes sorption onto compost, determination of the maximum sorption capacity of the analyzed dyes on compost. During each experiment, sorbent concentration in the solution was at 5 g d.m./dm3. The concentration of dye remaining in the solution was determined with the spectrophotometric method on a UV-VIS SP 2000 spectrophotometer. Analyses were conducted at a room temperature – T = 22°C. The pH value of solutions was adjusted with aqueous solutions of HCl and NaOH. Sorption of the anionic reactive dyes RY84 and RB5 was the most effective at pH = 3. The optimal pH value of cationic dyes sorption was established at pH = 5. At a high pH value (pH = 9), the sorption of each type of dye was impaired due to partial solubilization of the compost sorbent. The equilibrium time of dyes sorption on compost accounted for 180 min in the case of RY84, RB5 and BG4, and for 240 min in the case of BV10 – 240 min. Analyses of the maximum sorption capacity of the selected dyes on compost were carried out already after establishing the optimal pH value of the sorption process for each dye. Results obtained were described with the use of two sorption models: a heterogenous Langmuir 2 model (double Langmuir equation), and a heterogenousFreundlich model. The Langmuir 2 model showed the best fit to experimental data (R2> 0.99). Due to the presence of functional groups -COOH and -OH, compost is negatively charged in aqueous solutions owing to which it prefers compounds with a positive charge (cationic dyes) during sorption. Electrostatic repulsion significantly impairs the adsorption of anionic dyes. The maximum sorption capacity of compost in the case of RY84 and RB5 reached 2.15 mg/g d.m. and 4.79 mg/g d.m., whereas in the case of BG4 and BV10 – 26.41 mg/g d.m. and 27.20 mg/g d.m., respectively. Results of the maximum sorption capacity of dyes on compost were referred to results obtained with other unconventional and cheap sorbents.
Rocznik
Strony
2398--2411
Opis fizyczny
Bibliogr. 34 poz., tab., rys.
Twórcy
autor
  • Uniwersytet Warmińsko-Mazurski Olsztyn
  • Uniwersytet Warmińsko-Mazurski Olsztyn
  • Uniwersytet Warmińsko-Mazurski Olsztyn
autor
  • Uniwersytet Warmińsko-Mazurski Olsztyn
  • Uniwersytet Warmińsko-Mazurski Olsztyn
Bibliografia
  • 1. Akkaya G., Ozer A.: Biosorption of Acid Red 274 (AR 274) on Dicranellavaria: Determination of equilibrium and kinetic model parameters. Process Biochemistry 40: 3559–3568 (2005).
  • 2. Al-Degs Y.S., El-Barghouthi M.I., El-Sheikh A.H., Walker G.M.: Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments. 77: 16–23 (2008).
  • 3. Anielak A.M: Biodegradacja i wpływ wybranych barwników na pracę osadu czynnego. Monografie 49. WSInż. w Koszalinie 1993.
  • 4. Anielak A.M: Odbarwianie ścieków pofarbiarskich w procesie współstrącania i sorpcji. Monografie 50. WSInż. w Koszalinie 1995.
  • 5. Annadurai G., Juang R.S., Lee D.J.: Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials. 92: 263–274 (2002).
  • 6. Bezak-Mazur E., Adamczyk D.: Adsorpcja barwników na świeżym i zregenerowanym węglu WDextra. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 13. 951–972 (2011).
  • 7. Bhatnagar A., Jain A.K.: A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. Journal of Colloid and Interface Science. 281: 49–55 (2005).
  • 8. Cicek F., Ozer D., Ozer A., Ozer A.: Low cost removal of reactive dyes using wheat bran. Journal of Hazardous Materials. 146: 408–416 (2007).
  • 9. Crini G.: Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology. 97: 1061–1085 (2006).
  • 10. Davila-Jimeneza M.M., Elizalde-Gonzalez M.P. Pelaez-Cid A.A.: Adsorption interaction between natural adsorbents and textile dyes in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 254: 107–114 (2005).
  • 11. Filipkowska U., Janczukowicz W., Rodziewicz J., Szmit R.: Adsorpcja barwników z roztworów wodnych na popiołach. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 13. 1173–1184 (2011).
  • 12. Filipkowska U., Rodziewicz J., Moczkowska I.: Usuwanie barwnika Basic Violet 10 z roztworów wodnych na zeolicie. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 12. 747–760 (2010).
  • 13. Filipkowska U.: Adsorption and desorption of Reactive Dyes onto Chitin and Chitosan Flakes and Beads. Adsorption Science and Technology. 24: 781–795 (2006).
  • 14. Garg V.K., Gupta R., Yadav A.B., Kumar R.: Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Techlology. 89: 121–124 (2003).
  • 15. Gong R., Jin Y., Chen J., Y. Hu, Sun J.: Removal of basic dyes from aqueous solution by sorption on phosphoric acid modified rice straw. Dyes and Pigments. 73: 332–337 (2007).
  • 16. Janos P., Buchtova H., Ryznaro M.: Sorption of dyes from aqueous solutions onto fly ash. Water Research. 37: 4938–4944 (2003).
  • 17. Kara S., Aydiner C., Demirbas E., Kobya M., Dizge N.X.: Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash. Desalination. 212: 282–293 (2007).
  • 18. Khattri S.D., Singh M.K.: Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorption Science and Technology. 17: 269–282 (1999).
  • 19. Klimiuk E., Filipkowska U., Wojtasz-Pająk A.: The Effect of pH and Chitin Preparation on Adsorbtion of Reactive Dyes. Polish Journal of Environmental Studies. 12: 575–588 (2003).
  • 20. Kumar K.V.: Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dyes Pigments 74: 595–597 (2007).
  • 21. Kumar M.N.V.R.: A review of chitin and chitosan applications. Reactive and Functional Polymers 46: 1–27. (2000).
  • 22. Kyzas G.Z., Lazaridis N.K.: Reactive and basic dyes removal by sorption onto chitosan derivatives. Journal of Colloid and Interface Science. 331: 32–39 (2009).
  • 23. Kyzioł-Komosińska J., Rosik-Dulewska C., Dzieniszewska A., Pająk M.: Compost asbiosorbent for removal of acid dyes from the wastewater generated by the textile industry. Archives of Environmental Protection. 37: 3–14 (2011).
  • 24. Majewska-Nowak K.: Usuwanie barwników ze ścieków przemysłowych. Ochrona Środowiska 488 (30): 17–22 (1986).
  • 25. Namasivayam C., Kanchana N., Yamuna R.T.: Waste banana pith as adsorbent for the removal of Rhodamine B from aqueous solution. Waste Management. 13: 89–95 (1993).
  • 26. Namasivayam C., Kumar M.D., Selvi K., Ashruffunissa R.B., Vanathi T., Yamuna R.T.: Waste coir pith – a potential biomass for the treatment of dyeing wastewaters. Biomass Bioenergy. 21: 477–483 (2001).
  • 27. Osma J.F., Saravia V., Toca-Herrera J.L., Couto S.R.: Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions. Journal of Hazardous Materials. 147: 900–905 (2007).
  • 28. Prado A.G.S., Pertusatti J., Nunes A.R.: Aspects of Protonation and Deprotonation of Humic Acid Surface on Molecular Conformation. Journal of the Brazilian Chemical Society. 22: 1478–1483 (2011).
  • 29. Sahin E.: Interpretation of Sorption Kinetics for Mixtures of Reactive Dyes on Wool. Turkish Journal of Chemistry. 29: 617–626 (2005).
  • 30. Tsui L.S., Roy W.R., Cole M.A.: Removal of dissolved textile dyes from wastewater by a compost sorbent. Coloration Technology. 119: 14–18 (2003).
  • 31. Vadivelan V., Kumar K.V.: Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 286: 90–100 (2005).
  • 32. Wang Z., Xiang B., Cheng R., Li Y.: Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch. Journal of Hazardous Materials. 183: 224–232 (2010).
  • 33. Wong Y.C, Szeto Y.S.,Cheung W.H., McKay G.: Adsorption of acid dyes on chitosan – Equilibrium isotherm analyses. Proces Biochemistry. 39: 693–702 (2004).
  • 34. Zhou L.X., Wong J.W.: Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption. Journal of Environmental Quality.30: 878–883 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d50bd79-a7c0-4187-bccc-d0fba591b6a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.