PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Depositional environments of the Carboniferous-Permian Taiyuan Formation (southern North China Block) as deduced from trace elements and from carbon and oxygen isotopes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Limestone layers are extensively developed in the continental/ocean transitional Taiyuan Formation. This formation accumulated on the southern North China Block. The precise environmental conditions of the Taiyuan Formation are still controversial. More information about these topics is presented here on the basis of the analysis of trace elements (Mo, V, Cd, Cr, U, Th), which can be used to determine characteristics of the depositional environment, and of carbon and oxygen isotopes (δ13C and δ18O) in limestone samples from the Huainan Coal Basin. Samples were taken for the purpose from cores of all 13 limestone levels, obtained from a coal-exploration borehole (code P2) in the Huainan Coal Basin. It was found that the δ18O values show a decreasing trend, suggesting a gradual rise of the sea level in a warm climate. Three negative shifts of δ13C appear in a lower, a middle and an upper limestone layer, accompanied by relative enrichment of the redox-sensitive elements (Cd, Cr, Mo and V). These three layers are thus deduced to have been deposited in a warm climate with a high sea level and with more terrigenous input than during deposition of the other limestone layers. The redox elements and elemental ratios (V/Cr, Th/U) in the limestones suggest deposition in an oxygen-rich sea with high salinity.
Rocznik
Strony
art. no. 1
Opis fizyczny
Bibliogr. 89 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Qingdao, Shandong 266590, China
  • Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
autor
  • University of Science and Technology of China, School of Earth and Space Sciences, Hefei, Anhui 230026, China
  • Exploration and Research Institute, Anhui Provincial Bureau of Coal Geology, Hefei 230088, China
  • Shandong University of Science and Technology, College of Earth Science and Engineering, Qingdao, Shandong 266590, China
autor
  • University of Science and Technology of China, School of Earth and Space Sciences, Hefei, Anhui 230026, China
  • Exploration and Research Institute, Anhui Provincial Bureau of Coal Geology, Hefei 230088, China
Bibliografia
  • 1. AQUSIC (General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China), 2010. GB/T 14506.30-2010. Methods for chemical analysis of silicate rocks - Part 30: Determination of 44 elements. AQSIC, Beijing.
  • 2. Adelson, J.M., Helz, G.R., Miller, C.V., 2001. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments. Geochimica et Cosmochimica Acta, 65: 237-252.
  • 3. Algeo, T.J., Maynard, J.B., 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206: 289-318.
  • 4. Brand, R., 1982. The oxygen and carbon isotope composition of Carboniferous fossil components: sea-water effects. Sedimentology, 29: 139-147.
  • 5. Bruckschen, P., Oesmann, S., Veizer, J., 1999. Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chemical Geology, 161: 127-163.
  • 6. Chaillou, G., Anschutz, P., Lavaux, G., Schäfer, J., Blanc, G., 2002. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay. Marine Chemistry, 80: 41-59.
  • 7. Chen, J., Van Loon, A.J., Han, Z., Chough, S.K., 2009. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sedimentary Geology, 221: 1-6.
  • 8. Coplen, T.B., Kendall, C., Hopple, J., 1983. Comparison of stable isotope reference samples. Nature, 302: 236-238.
  • 9. Dean, W.E., Piper, D.Z., Peterson, L.C., 1999. Molybdenum accumulation in Cariaco basin sediment over the past 24 k.y.: a record of water-column anoxia and climate. Geology, 27: 507-510.
  • 10. Fan, B.H., Zhu, W.B., He, X.L., 1999. Early Permian brachiopod fauna from Yangquan, Shanxi Province. Acta Palaeontologica Sinica, 38: 353-364.
  • 11. Flügel, E., 2010. Microfacies of Carbonate Rocks - Analysis, Interpretation and Application. Springer-Verlag, Berlin.
  • 12. Frimmel, H.E., 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, 258: 338-353.
  • 13. Ganai, J.A., Rashid, S.A., Romshoo, S.A., 2018. Evaluation of terrigenous input, diagenetic alteration and depositional conditions of Lower Carboniferous carbonates of Tethys Himalaya, India. Solid Earth Sciences, 3: 33-49.
  • 14. Gao, J., 1988. The Paleoecological features and environmental background of brachiopod from the Taiyuan Formation in Shanxi Province (in Chinese with English summary). Geoscience, 2: 175-185.
  • 15. Ge, B.X., Yiu, G.X., Li, C.S., 1985. A preliminary study on sedimentary environments and law of coal-bearing formation in Yangquan, Shanxi. Acta Sedimentologica Sinica, 3: 33-44.
  • 16. Golonka, J., Ford, D., 2000. Pangean (Late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies. Palaeogeography Palaeoclimatology Palaeoecology, 161: 1-34.
  • 17. Grossman, E.L., Bruckschen, P., Mii, H.-S., Chuvashov, B.I., Yancey, T.E., Veizer, J., 2002. Carboniferous paleoclimate and global change: isotopic evidence from the Russian Platform: Carboniferous stratigraphy and Paleogeography in Eurasia. Institute of Geology and Geochemistry, Russian Academy of Sciences, Urals Branch (Ekaterinburg): 61-71.
  • 18. Guo, J., Sun, G., Liu, W., 2019. Formation phases of carbonate cements and sedimentary environments in lower Jurassic sandstones of the Lenghu V tectonic belt, North Qaidam Basin, China. Carbonates and Evaporites, 34: 1367-1379.
  • 19. Guo, Y., Liu, H., 2000. The late Palaeozoic depositional systems of Shaanxi-Gansu-Ningxia area (in Chinese with English summary). Journal of Palaeogeography, 2: 19-30.
  • 20. Han, S.F., 1990. Coal-forming Conditions and Coalfield Prediction in Huaibei-Huainan Region. Geological Publishing House (Beijing): 41-65.
  • 21. Hastings, D.W., Emerson, S.R., Mix, A.C., 1996. Vanadium in foraminiferal calcite as a tracer for changes in the areal extent of reducing sediments. Paleoceanography, 11: 665-678.
  • 22. Hilton, J., Wang, S.-J., Galtier, J., Li, C.-S., 2001. An Early Permian plant assemblage from the Taiyuan Formation of northern China with compression/impression and permineralized preservation. Review of Palaeobotany and Palynology, 114: 175-189.
  • 23. Isbell, J.L., Cole, D.I., Catuneanu, O., 2008. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: stratigraphy, depositional controls, and glacial dynamics. GSA Special Papers, 441: 71-82.
  • 24. Jacobsen, S.B., Kaufman, A.J., 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161: 37-57.
  • 25. Jaffrés, J., Shields-Zhou, G.A., Wallmann, K., 2007. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth-Science Reviews, 83: 83-122.
  • 26. Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111-129.
  • 27. Kaufman, A.J., Jacobsen, S.B., Knoll, A.H., 1993. The Vendian record of Sr and C-isotopic variations in seawater: implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120: 409-430.
  • 28. Keith, M.L., Weber, J.N., 1964. Isotopic composition and environmental classification of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28: 1787-1816.
  • 29. Kimura, T., 1998. Relationships between inorganic elements and minerals in coals from the Ashibetsu district, Ishikari coal field Japan. Fuel Process Technology, 56: 1-19.
  • 30. Korte, C., Kozur, H.W., Veizer, J., 2005. δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeography Palaeoclimatology Palaeoecology, 226: 287-306.
  • 31. Kuleshov, V.N., Sedaeva, K.M., Gorozhanin, V.M., Gorozhanina E.N., 2018. Hypostratotype of the Bashkirian stage of the Carboniferous system (Askyn River, Bashkortostan): lithology, isotopes (δ13C, δ18O), and carbonate depositional settings. Stratigraphy and Geological Correlation, 26: 698-719.
  • 32. Kump, L.R., Arthur, M.A., 1999. Interpreting carbon isotope excursions: carbonates and organic matter. Chemical Geology, 161: 181-198.
  • 33. Latal, C., Piller, W.E., Harzhauser, M., 2004. Palaeoenvironmental reconstructions by stable isotopes of Middle Miocene gastropods of the central Paratethys. Palaeogeography Palaeoclimatology Palaeoecology, 211: 157-169.
  • 34. Lee, Y.I., Lee, J.I., 2003. Paleozoic sedimentation and tectonics in Korea: a review. Island Arc, 12: 162-179.
  • 35. Li, X-Y., Wang, S.-P., 2006. Study of the sedimentary microfacies of the Taiyuan Formation in the Tabamiao area, Ordos, China (in Chinese with English summary). Journal of Chengdu University of Technology (Science and Technology Edition), 33: 214-217.
  • 36. Li, H.Y., He, B., Xu, Y.G., Huang, X.L., 2010. U-Pb and Hf isotope analyses of detrital zircons from Late Paleozoic sediments: insights into interactions of the North China Craton with surrounding plates. Journal of Asian Earth Sciences, 39: 335-346.
  • 37. Lv, D.W., Chen, J.T., 2014. Depositional environments and sequence stratigraphy of the Late Carboniferous-Early Permian coal-bearing successions (Shandong Province, China): sequence development in an epicontinental basin. Journal of Asian Earth Sciences, 79: 16-30.
  • 38. Mao, Y., Webster, G.D., Ausich, W.U., Li 2018. A new crinoid fauna from the Taiyuan Formation (early Permian) of Henan, North China. Journal of Paleontology, 92: 1066-1080.
  • 39. McManus, J., Berelson, W.M., Klinkhammer, G.P., Hammond, D.E., Holm, C., 2005. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta, 69: 95-108.
  • 40. McConnaughey, T., 1989. C-13 and O-18 isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53: 163-171.
  • 41. McConnaughey, T.A., Burdett, J., Whelan, J.F., Paull, C.K., 1997. Carbon isotopes in biological carbonates. Respiration and Photosynthesis, 61: 611-622.
  • 42. Mii, H-S., Grossman, E.L., Yancey, T.E., Chuvashov, B., 2001. Isotopic records of brachiopod shells from the Russian Platform - evidence for the onset of mid-Carboniferous glaciation. Chemical Geology, 175: 133-147.
  • 43. Montańez, I.P., Cecil, C.B., 2013. Paleoenvironmental clues archived in non-marine Pennsylvanian-lower Permian limestones of the central Appalachian Basin, USA. International Journal of Coal Geology, 119: 41-55.
  • 44. Morford, J.L., Russell, A.D., Emerson, S., 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanlich Inlet, BC. Marine Geology, 174: 355-369.
  • 45. Neuhuber, S., Wagreich, M., Wendler, U., Spötl, C., 2007. Turonian Oceanic Red Beds in the Eastern Alps: concepts for palaeoceanographic changes in the Mediterranean Tethys. Palaeogeography Palaeoclimatology Palaeoecology, 251: 222-238.
  • 46. Pailler, D., Bard, E., Rostek, F., Zheng, Y., Mortlock, R., Van Geen, A., 2002. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession. Geochimica et Cosmochimica Acta, 66: 849-865.
  • 47. Payne, J.L., Kump, L.R., 2007. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth and Planetary Science Letters, 256: 264-277.
  • 48. Pufahl, P.K., James, N.P., Kyser, T.K., Lukasik, J.J., Bone, Y., 2006. Brachiopods in epeiric seas as monitors of secular changes in ocean chemistry: a Miocene example from the Murray Basin, South Australia. Journal of Sedimentary Research,76: 926-941.
  • 49. Rosenthal, Y., Boyle, E.A., Labeyrie, L., 1997. Last Glacial Maximum paleochemistry and deepwater circulation in the Southern Ocean: evidence from foraminiferal Cd. Paleoceanography, 12: 787-796.
  • 50. Ross, C.A., Ross, J.R.P., 1988. Late Paleozoic transgressive-regressive deposition. SEPM Special Publication, 42: 227-247.
  • 51. Sahney, S., Benton, M.J., Falcon-Lang, H.J., 2010. Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica. Geology, 38: 1079-1082.
  • 52. Sarin, M.M., Krishnaswami, S., Somayajulu, B.L.K., Moore, W.S., 1990. Chemistry of uranium, thorium, and radium isotopes in the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 54: 1387-1396.
  • 53. Scheffler, K., Hoernes, S., Schwark, L., 2003. Global changes during Carboniferous-Permian glaciation of Gondwana: linking polar and equatorial climate evolution by geochemical proxies. Geology, 31: 605-608.
  • 54. Schmitz, B., Charisi, S.D., Thompson, E.I., Speijer, R.P., 1997. Barium, SiO2 (excess), and P2O5 as proxies of biological productivity in the Middle East during the Palaeocene and the latest Palaeocene benthic extinction event. Terra Nova, 9: 95-99.
  • 55. Schmitz, M.D., Pfefferkorn, H.W., Shen, S.-Z., Wang, J., 2020. A volcanic tuff near the Carboniferous-Permian boundary, Taiyuan Formation, North China: radioisotopic dating and global correlation. Review of Palaeobotany and Palynology, 104-244 (in press).
  • 56. Scotese, C.R., Nokleberg, W.J., Parfenov, L.M., Badarch, G., Berzin, N.A., Khanchuk, A.I., Kuzmin, M.I., Obolenskiy, A.A., Prokopiev, A.V., Rodionov, S.M., Yan, H., 2005. Tectonic and metallogenic evolution of northeast Asia: Key to regional understanding. In: Mineral Deposit Research: Meeting the Global Challenge. Springer, Berlin, Heidelberg: 1183-1184.
  • 57. Shao, L.-Y., Yang, Z.-Y., Shang, X.-X., Xiao, Z.-H., Wang, S., Zhang, V.L., Zheng, M.Q., Lu, J., 2015. Lithofacies palaeogeography of the Carboniferous and Permian in the Qinshui Basin, Shanxi Province, China. Journal of Palaeogeography, 4: 384-412.
  • 58. Shen, S.Z., Zhang, H., Shang, Q.H., Li, W.Z., 2006. Permian stratigraphy and correlation of Northeast China: a review. Journal of Asian Earth Sciences, 26: 304-326.
  • 59. Song, H., Hu, B., Zhang, L., Liu, S., Niu, Y., 2011. Characteristics of lithofacies paleogeography of the Taiyuan Formation sedimentary period, Henan Province (in Chinese with English summary). Acta Sedimentologica Sinica, 29: 876-888.
  • 60. Song, H.-B., Wang, H., Wang, F., Guo, R.-R., Hu, B., 2016. Ichnofossils and ichnofabrics in the Lower Permian Taiyuan Formation of North China Basin. Geodinamica Acta, 28: 37-52.
  • 61. Su, D.-C., Van Loon, A.J., Sun, A.P., 2016. How quiet was the epeiric sea when the Middle Cambrian Zhangxia Formation was deposited in SW Beijing, China? Marine and Petroleum Geology, 72: 209-217.
  • 62. Sun, R., Liu, G., Zheng, L., Chou, C.-L., 2010. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coal field, Anhui, China. International Journal of Coal Geology, 81: 81-96.
  • 63. Sundby, B., Martinez, P., Gobeil, C., 2004. Comparative geochemistry of cadmium, rhenium, uranium and molybdenum in continental margin sediments. Geochimica et Cosmochimica Acta, 68: 2485-2493.
  • 64. Tazawa, J., 2002. Late Paleozoic brachiopod faunas of the South Kitakami Belt, northeast Japan, and their paleobiogeographic and tectonic implications. Island Arc, 11: 287-301.
  • 65. Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32.
  • 66. Van Os, B.J.H., Middelburg, J.J., De Lange, G.J., 1991. Possible diagenetic mobilization of barium in sapropelic sediments from the eastern Mediterranean. Marine Geology, 100: 125-136.
  • 67. Van Beek, P., Reyss, J.L., Bonte, P., Schmidt, S., 2003. Sr/Ba in barite: a proxy of barite preservation in marine sediments. Marine Geology, 199: 205-220.
  • 68. Van Loon, A.J., Han, Z., Han, Y., 2012. Slide origin of breccia lenses in the Cambrian of the North China Platform: new insight into mass transport in an epeiric sea. Geologos, 18: 223-235.
  • 69. Veizer, J., 2013. Carbonates and ancient oceans: Isotopic and chemical record on time scales of 107-109 years. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (ed. E.T. Sundquist and W.S. Broecker): 595-601. American Geophysical Union.
  • 70. Veizer, J., Prokoph, A., 2015. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Science Reviews, 146: 92-104.
  • 71. Wan, M.L., Yang, W., He, X.Z., Liu, L.J., Wang, J., 2017. First record of fossil basidiomycete clamp connections in cordaitalean stems from the Asselian-Sakmarian (lower Permian) of Shanxi Province, North China. Palaeogeography Palaeocimatology Palaeoecology, 466: 353-360.
  • 72. Wang, J., 2010. Late Paleozoic macrofloral assemblages from Weibei Coalfield, with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block. International Journal of Coal Geology, 83: 292-317.
  • 73. Wang, J., Pfefferkorn, H.W., 2013. The Carboniferous-Permian transition on the North China microcontinent - oceanic climate in the tropics. International Journal of Coal Geology, 119: 106-113.
  • 74. Wang, J., Pfefferkorn, H.W., Zhang, Y., Feng, Z., 2012. Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. Proceedings of the National Academy of Sciences, 109: 4927-4932.
  • 75. Wang, J., Béthoux, O., Ren, D., Cui, Y., 2019. An insect wing discovered in the Early Permian Taiyuan Formation (Shanxi Province, China). Fossil Record, 22: 23-76.
  • 76. Wang, K.Y., Yan, Y.H., Yang, R.Y., Chen, Y.F., 1985. REE geochemistry of early Precambrian charnockites and tonalitic-granodioritic gneisses of the Qianan Region, eastern Hebei, North China. Precambrian Research, 27: 63-84.
  • 77. Wang, Z., Liu, J., Van Loon, A.J., Zhu, D., Qin, P., Han, Z., 2020. Slope failure on a Cambrian carbonate platform, mass-flow transitions and resulting complex deposit. Geological Quarterly, 64 (1): 3-15.
  • 78. Wignall, P.B., Zonneveld, J.P., Newton, R.J., Amor, K., Sephton, M.A., Hartley, S., 2007. The end Triassic mass extinction record of Williston Lake, British Columbia. Palaeogeography Palaeoclimatology Palaeoecology, 253: 385-406.
  • 79. Wu, D., Zhang, W., 2019. Geochemical characteristics of trace elements and carbon isotopes in Taiyuan Formation: a case study of Huainan Coalfield. Geosciences Journal, 23: 991-1003.
  • 80. Wu, F., Chen, Z., Zhang, S.L., Ge, L., 1995. Transgressions during Permo-Carboniferous period in North China (in Chinese with English summary). Geoscience, 9: 284-292.
  • 81. Yang, R., Van Loon, A.J., 2016. Early Cretaceous slumps and turbidites with peculiar soft-sediment deformation structures on Lingshan Island (Qingdao, China) indicating a tensional tectonic regime. Journal of Asian Earth Sciences, 129: 206-219.
  • 82. Yang, R., Fan, A., Han, Z., Van Loon, A.J., 2016. An upward shallowing succession of gravity flow deposits in the Early Cretaceous Lingshandao Formation, western Yellow Sea. Acta Geologica Sinica, 90: 1553-1554.
  • 83. Yang, R., Fan, A., Han, Z., Van Loon, A.J., 2017. A marine or continental nature of the deltas in the Early Cretaceous Lingshandao Formation - Evidences from trace elements. Acta Geologica Sinica, 91: 367-368.
  • 84. Yarincik, K.M., Murray, R.W., Lyons, T.W., Peterson, L.C., Haug, G.H., 2000. Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography, 15: 593-604.
  • 85. Zhang, H.X., 2017. The late Paleozoic brachiopod communities and their environmental significance from Shuiquangou, Yangquan, Shanxi Province, Inner Mongolia (in Chinese with English summary). Science, Technology and Economy, 1: 75-76.
  • 86. Zhang, M.M., Liu, Z.J., Fang, S., Sun, Q.S., 2014. Sandstone composition of the Upper Jurassic Emuerhe Formation from the Mohe Basin, China. Geological Magazine, 151: 850-863.
  • 87. Zhao, M.Y., Zheng, Y.-F., 2014. Marine carbonate records of terrigenous input into Paleotethyan seawater: geochemical constraints from Carboniferous limestones. Geochimica et Cosmochimica Acta, 141: 508-531.
  • 88. Zhao, Y.Y., Zheng, Y.-F., Chen, F., 2009. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chemical Geology, 265: 345-362.
  • 89. Zheng, Y.F., Xiao, W.-J., Zhao, G., 2013. Introduction to tectonics of China. Gondwana Research, 23: 1189-1206.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d507aa2-5837-483c-ab5b-ef181768b8de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.