PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the bearing resistance of the modified bolted end-plate joints of thin-walled profiles used in modular construction

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza nośności zmodyfikowanych śrubowych złączy doczołowych profili cienkościennych stosowanych w budownictwie modułowym
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of testing the bearing resistance of the bolted joints of thin-walled profiles used in modular construction. The two types of joints currently applied in the construction industry were subjected to tests. One of them served as the reference sample, and the other as the research sample, which was used to find a solution that is more favorable in terms of the complexity of its production process and its bearing resistance. In addition to the modified shape of the end-plates, the bearing resistance of the joint was also analyzed with regards to the different diameters of bolts (bolts M12 and M16 were used), their classes (the difference between bolts of class 8.8 and 10.9 was examined), and also the number of them in the joint (3 or 5 bolts). Moreover, two thicknesses of steel sheets (3 mm and 4 mm), from which thin-walled cold-bent profiles were made, were used in the research. The bearing resistance tests were carried out with the use of a testing press of the authors’ own design. On the basis of the measurements, plots of the dependence between the deflection of the samples and the force acting in the middle of their span were drawn. It was shown that the tested profile joint had an increased bearing resistance by up to 26% when compared to the reference sample. The maximum destructive bending moment M was equal to 10,7 kN·m for the reference sample, and to 13.5 kN·m for the analyzed design solution. In total, 6 types of modified joints were made for the tests, of which five showed a comparable or higher bearing resistance than the reference sample. Each type of joint was tested by bending it in two directions in relation to the central axis of its cross-section.
PL
W pracy przedstawiono wyniki badań nośności połączeń, skręcanych profili cienkościennych wykorzystywanych w budownictwie modułowym. W badaniach wykorzystano dwa typy połączeń obecnie stosowanych w budownictwie, z których jedno posłużyło jako próba odniesienia, natomiast drugie jako próba badawcza mająca na celu znalezienie rozwiązania korzystniejszego pod względem złożoności procesu produkcyjnego oraz nośności połączenia. Oprócz zmodyfikowanego kształtu blach czołowych, dokonano również analizy nośności połączenia w zależności od wykorzystanych różnych średnic śrub (stosowano śruby M12 oraz M16), jak również ich klasy (zbadano różnicę pomiędzy śrubami klasy 8.8 i 10.9) i ilości w połączeniu (3 lub 5 śrub). Ponadto w badaniach wykorzystano dwie grubości blach stalowych, z których wykonano łączone zimnogięte profile cienkościenne (3 mm i 4 mm). Próby nośności przeprowadzono z wykorzystaniem prasy wytrzymałościowej własnej konstrukcji. Na podstawie pomiarów sporządzono wykresy zależności ugięcia próbek od działającej w środku ich rozpiętości siły. Wykazano, że badane połączenie profili spowodowało wzrost ich nośności nawet o 26% w stosunku do próby odniesienia. Maksymalny niszczący moment zginający M wynosił 10,7 kN·m w przypadku próbki odniesienia oraz 13,5 kN·m w przypadku analizowanego rozwiązania konstrukcyjnego. Łącznie do testów wykonano 6 typów połączeń modyfikowanych, z czego 5 z nich wykazało nośność porównywalną, lub wyższą od próby odniesienia. Każdy z typów połączenia badano poprzez zginanie w dwóch kierunkach, względem osi centralnych przekroju.
Rocznik
Strony
245--263
Opis fizyczny
Bibliogr. 25 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland
Bibliografia
  • [1] R.M. Lawson, R.G. Ogden, and R. Bergin, “Application of modular construction in high-rise buildings”, Journal of Architectural Engineering, vol. 18, no. 2, pp. 148-154, 2012, doi: 10.1061/(ASCE)AE.1943-5568.0000057.
  • [2] H. T. Thai, T. Ngo, and B. Uy, “A review on modular construction for high-rise buildings”, Structures, vol. 28, pp. 1265-1290, 2020, doi: 10.1016/j.istruc.2020.09.070.
  • [3] J. Olearczyk, M. Al-Hussein, and A. Bouferguene, “Evolution of the crane selection and on-site utilization process for modular construction multilifts”, Automation in Construction, vol. 43, pp. 59-72, 2014, doi: 10.1016/j.autcon.2014.03.015.
  • [4] A. WA. Hammad, A. Akbarnezhad, P. Wu, X. Wang, and A. Haddad, “Building information modelling-based framework to contrast conventional and modular construction methods through selected sustainability factors”, Journal of Cleaner Production, vol. 228, no. 10, pp. 1264-1281, 2019, doi: 10.1016/j.jclepro.2019.04.150.
  • [5] R. Alihodzic, V. Murgul, N. Vatin, E. Aronova, V. Nikolić, M. Tanić, and D. Stanković, “Renewable energy sources used to supply pre-school facilities with energy in different weather conditions”, Applied Mechanics and Materials, vol. 624, pp. 604-612, 2014, doi: 10.4028/www.scientific.net/amm.624.604.
  • [6] J.Y.R. Liew, Y.S. Chua, and Z. Dai, “Steal concrete composite systems for modular construction of high-rise buildings”, Structures, vol. 21, pp. 135-149, 2019, doi: 10.1016/j.istruc.2019.02.010.
  • [7] S. Mills, D. Grove, and M. Egan, “Breaking the pre-fabricated ceiling: Challenging the limits for modular high-rise”, in New York Conference Proceedings of CTBUH International Conference. New York, USA: Council on Tall Buildings and Urban Habitat, 2015, pp. 416-425.
  • [8] W. Pan, Y. Yang, and L. Yang, “High-rise modular building: Ten-year journey and future development”, in Construction Research Congress. New Orleans, Louisiana, USA: ASCE, 2018, pp. 523-532.
  • [9] N. Bertram, S. Fuchs, J. Mischke, R. Palter, G. Strube, and J. Woetzel, Modular construction: From projects to products. Warszawa: McKinsey & Company: Capital Projects & Infrastructure, 2019.
  • [10] A. Jellen, and A. Memari, “The state-of-the-art application of modular construction to multi-story residential building”, in Proceedings of the 1st Residential Building Design & Construction Conference. Bethlehem, Palestine, 2013, pp. 284-293.
  • [11] A. W. Lacey, W. Chen, H. Hao, and K. Bi, “Structural response of modular buildings - An overview”, Journal of Building Engineering, vol. 16, pp. 45-56, 2018, doi: 10.1016/j.jobe.2017.12.008.
  • [12] M. Lawson, R. Ogden, and C. Goodier, Design in Modular Construction. Boca Raton, USA: CRC Press, 2014.
  • [13] J. Peng, C. Hou, and L. Shen, “Numerical analysis of corner-supported composite modular buildings under wind actions”, Journal of Constructional Steel Research, vol. 187, art. no. 106942, 2021, doi: 10.1016/j.jcsr.2021.106942.
  • [14] Y. Chen, C. Hou, and J. Peng, “Stability study on tenon-connected SHS and CFST columns in modular construction”, Steel and Composite Structures, vol. 30, no. 2, pp. 185-199, 2019, doi: 10.12989/scs.2019.30.2.185.
  • [15] Z. Pisarek, “Obliczanie doczołowych połączeń śrubowych zginanych ukośnie”, Journal of Civil Engineering, Environment and Architecture, vol. 60, no. 2, pp. 219-229, 2013, doi: 10.7862/rb.2013.27.
  • [16] H. Agerskov, “High-strength bolted connections subject to prying”, Journal of Structural Division, vol. 102, no. 1, pp. 161-175, 1976, doi: 10.1061/JSDEAG.0004253.
  • [17] B. Kato and A. Mukai, “Bolted tension flanges joining square hollow section members”, Journal of Constructional Steel Research, vol. 5, no. 3, pp. 163-177, 1985, doi: 10.1016/0143-974X(85)90001-X.
  • [18] A. Wheeler, M. Clarke, and G. J. Hancock, Design model for bolted moment end-plate connections joining rectangular hollow sections using eight bolts. Research Report No R827. Sydney, NSW, Australia: Department of Civil Engineering, The University of Sydney, 2003.
  • [19] M. Heinisuo, V. Laine, and E. Lehtimäki, “Enlargement of the component method into 3D”, in Nordic Steel Construction Conference, 2-4 September 2009, Malmö, Sweden. 2009, pp. 430-437.
  • [20] N. Neumann and F. Nuhic, “Design of structural joints connecting H or I sections subjected to in-plane and out-of-plane bending”, in Proc. 6th European Conference on Steel and Composite Structures (Eurosteel 2011), vol. A. Budapest, 2011, pp. 303-308.
  • [21] N. Neumann, M. Buzaljkob, E. Thomassenc, and F. Nuhic, “Verification of design model for out-of-plane bending of steel joints connecting H or I sections”, in Proc. Nordic Steel Construction Conference (NSCC 2012). Oslo, 2012, pp. 683-692.
  • [22] PN-EN 1993-1-8 Eurokod 3: Projektowanie konstrukcji stalowych. Czesc 1-8: Projektowanie węzłów. PKN, 2005.
  • [23] W. Wuwer and R. Walentyński, “Analysis of a lap-joint in a thin walled structure under combined bending and shearing load”, Architecture Civil Engineering Environment, vol. 3, no. 2, pp. 71-81, 2010.
  • [24] E. Bernatowska and L. Ślęczka, “Numerical study of block tearing failure in steel angles connected by one leg”, Archives of Civil Engineering, vol. 67, no. 1, pp. 269-283, 2021, doi: 10.24425/ace.2021.136473.
  • [25] E. Bernatowska and L. Ślęczka, “Net section resistance of steel angles connected by one leg”, Archives of Civil Engineering, vol. 68, no. 4, pp. 275-291, 2022, doi: 10.24425/ace.2022.143038.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d505e88-1073-445c-88fe-f9ef78e2d7aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.